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Abstract— Grasp Quality Networks are important components
of grasping-capable autonomous robots, as they allow them to
evaluate grasp candidates and select the one with highest chance
of success. The widespread use of pick-and-place robots and
Grasp Quality Networks raises the question of whether such
systems are vulnerable to adversarial attacks, as that could
lead to large economic damage. In this paper we propose two
kinds of attacks on Grasp Quality Networks, one assuming
physical access to the workspace (to place or attach a new
object) and another assuming digital access to the camera

software (to inject a pixel-intensity change on a single pixel).

We then use evolutionary optimization to obtain attacks that
simultaneously minimize the noticeability of the attacks and
the chance that selected grasps are successful. Our experiments
show that both kinds of attack lead to drastic drops in
algorithm performance, thus making them important attacks to
consider in the cybersecurity of grasping robots. Source code
can be found at https://github.com/Naif-W-Alharthi/
Physical-and-Digital-Attacks-on-Grasping-Networks

I. INTRODUCTION

Robots are now widespread across manufacturing, logistics
and other industries, where they pick-and-place large amounts
of objects everyday. Cybersecurity issues in such systems
could thus lead to large economic impact. Grasp Quality
Networks [1], [2], [3], [4], [5], [6], in particular, are important
components of grasping-capable robots, as they allow them
to evaluate multiple grasp candidates and select the one with
highest chance of success. They are popular algorithms since
they can leverage recent progress in computer vision and
neural networks, but at the same time they might be vulnerable
to similar adversarial attacks as those recently shown on deep
neural networks [7].

In this paper we investigate the vulnerability of current
Grasp Quality Networks to adversarial attacks. Concretely,
we propose two kinds of attacks: physical and digital attacks.
Physical attacks are those where an attacker has physical
access to the robot’s workspace, and places a new (potentially
inconspicuous) object in the scene so as to trick the network
to pick a new grasp with a lower probability of success.
Digital attacks, on the other hand, assume that the attacker has
access to the camera software and is able to inject single-pixel
changes to the images before they reach the grasp network.
This leads the network to believe the workspace is different
from what it actually is, thus selecting a grasp that is more
unlikely to succeed. Both kinds of attack could lead robots to
damage property, thus provoking economic and reputational
harm. Such attacks are not implausible, since competing
businesses often adopt adversarial tactics for economic gain,
and recent events have shown that users often attack robots
for various reasons [8].
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Fig. 1. Example physical (top) and digital one-pixel (bottom) attacks
on Grasp Quality Networks. The physical attack corresponds to physically
placing a (barely visible) spherical object on the workspace, while the digital
attack corresponds to changing the intensity of a single pixel in the image
(without any physical changes to the scene). Both attacks lead the network
to change its preferred grasp, which is of considerably lower quality (i.e.
success probability).

Our contributions are thus the following:

1) We propose and characterize the threat model of two
attacks on Grasp Quality Networks (physical and
digital), which we implement through evolutionary
optimization.

2) We evaluate the attacks on various openly-available
models, showing they are able to drastically reduce the
quality of grasps—thus making this kind of attack an
important one to consider in robot cybersecurity.

II. RELATED WORK

Various algorithms have been proposed to estimate the
probability of a robot grasp’s success. One class of algorithms
uses human predictions of grasp success to train a grasp
scoring network [1]. Another class of algorithms is trained
directly on robots [2], and yet another uses physics simulation
in synthetic datasets [3], [4], [5], [6]. Those trained directly
on robots are expensive since they require many hours of
training (or many robots). For example Levine et al. [2] train
neural networks using many robots, in order to predict grasp
success probability from an image and task-space motion
command. Simulation-based networks [3], [4], [5], [6] have
been proven to provide a good balance between training
resources (since they do not require real experiments) and
reliability, with recent Grasp Quality Networks of this kind
showing high reliability even on real-world robot grasping



experiments [5], [6]. Some of these networks are also capable
of selecting a grasp and a gripper, in multi-gripper (multi-
arm) robot scenarios [5]. In this paper we focus our attacks
on this kind of simulation-based algorithm due to their
popularity, reliability, and open availability. Both of our
attacks are inspired by one-pixel attacks [7], which were
initially proposed for image classification algorithms such as
to fool them into classifying one object as a totally different
one. They are also inspired by physical attacks such as camera
sticker attacks [9], where a small sticker is put on the camera
itself in order to lower algorithms’ performance. This attack is
arguably easily identifiable as an attack, and thus unlikely to
be used, however. Our paper proposes one digital (one-pixel)
and one physical attack, and we consider more inconspicuous
physical attacks where a small object is placed on the robot’s
workplace.

Few attacks have been proposed in the robotics domain,
despite the importance of cybersecurity aspects of robotics
[10]. Most of the attacks have focused on network [11],
controller [12] and signal-interference [13] attacks to robot
systems, while our focus is on physical and image-based
attacks. One of the exceptions is the work on characterizing
reinforcement learning attacks [14], where different attacks
(on the motors, sensors, and environment) are considered.
In this type of classification, our attacks are environment
and sensor based, though they are targeted at specific
grasping algorithms whose vulnerability has not yet been
investigated. Another exception is the work on physical
attacks on Autonomous Vehicles and arm robots, where
objects are placed in the physical environment in order to
trick semantic segmentation [15], traffic sign classification
[16], or motion planning [17] algorithms.

Perhaps the closest work to ours in motivation is that
of Wang et al. [18], where they computationally generate
objects that will be hard to grasp in terms of formal grasp
quality metrics (number of antipodal points). Their algorithm
adds random perturbations and texture changes, which are
reasonable changes when the attacker is making a completely
new object, though this could be potentially unrealistic in a
pick-and-place logistics scenario, where the attacker would
have to create a new product. Our physical attack, on the
other hand, only requires placing or attaching a small object
to an existing product. Another difference is that our work is
targeted at machine learning-based grasp metrics, which are
now more popular, and we characterize both a physical and
a digital attack.

III. METHOD

Let Q(I,g) be a function that estimates the quality (or
equivalently the “score” or “success probability”’) of a grasp
g given an image /. An example of such a function is a
grasp quality network [3], and the grasp g is a general grasp
command (e.g. a pixel or a robot motor command). As is
typically the case [3], [4], [19], we assume the image is a
depth image, where the value at each pixel is related to the
metric distance from the camera to the nearest object in that
location.

A grasp selection algorithm is a function G(I) which
internally generates N candidate grasps g;, ¢ = 1,..., N,
and outputs the best-quality candidate ¢* = G(I) =
argmax, cc, o 1Q(1, g;). Both of our proposed attacks
work by generating a new image I’ =~ I which minimizes
the probability that the resulting selected grasp succeeds.

We propose two kinds of adversarial methods that do this
assuming different attacker capabilities. The first method is a
physical-environment attack (i.e. where the image change is
the result of physically placing a small object on top of an
existing object). The second method is a pure image attack
(i.e. where the image is changed by software, for example due
to an injection attack on compromised computer or network).
We now describe each of them in sequence.

A. Physical attack

1) Idea: The main idea of this attack is to simulate the
placement of a physical object on the scene, so as to make the
new grasp obtained by grasp-selection have as low chance
of success as possible (i.e. as low quality () as possible).
Because the attacker might not want to get caught, the attack
should make a small change to the environment, which in
this paper we assume to mean the added object is of the
smallest possible size.

2) Threat model: We assume the attacker has physical
access to the robot’s workspace, or access to objects before
they reach the robot—e.g. they are able to glue a small part
to an object before it reaches the robot. The objective of
the attack is to make the grasp selection algorithm select a
low-quality grasp, thus significantly increasing the chance of
the product being dropped and damaged. Potential incentives
for such attacks can be economic (i.e. to damage property
and thus raise costs, for example by a competitor company)
or reputational.

3) Method: We formulate the attack as a multi-objective
optimization problem:

( Q(f(I,5),G(fI,5))) ,

s.t. (x,y) € mask([])
peP

pTWp ) (1)

minimize
s=(z,y,p)

where (z,y) is the pixel location of the center of the object
in the depth image I, constrained to lie on top of existing
objects (i.e. mask(I) is the set of pixels of I where any object
is present), p € P are the parameters of the added object, and
f is a function that returns a new image I’ = f(I,s) which
simulates the addition of the new object to the scene. W is
a diagonal weight matrix, set so that p" Wp is a (weighted)
norm of object parameters, set as to make the object as small
as possible. In particular in this paper we implement physical
attacks as spheres for simplicity. Thus, p = r is the radius
of the sphere in pixels, W = [1] so as to minimize r, and f
places a sphere centered at (x,y, d) where d = I(z,y) is the
original depth (i.e. distance) at that pixel.

To solve this multi-objective optimization problem we use
an evolutionary Pareto-curve estimation algorithm, which
computes the optimal trade-off curve between the two



objectives. In particular we chose SPEA2 [20] for its
open implementation and efficiency over other optimization
approaches [21]. Basically, SPEA2 keeps and mutates a set
of “individuals”, where each individual holds a value of
s = (z,y,r) and is evaluated by two fitness functions—i.e.
the two objectives in (1). The first objective corresponds
to running the new image through the grasp-quality-and-
selection algorithms to obtain the quality of the best grasp,
while the second objective is equivalent to |r|.

B. Digital (one-pixel) attack

1) Idea: The main idea of this attack is to inject a change
to a single pixel in the image (e.g. through access to the
camera’s software or ROS interface [22]), so as to obtain
a grasp that has low chance of success on the real scene—
which was not physically changed. So as to make the attack
inconspicuous, the amount of intensity change to the image
should be as small as possible.

2) Threat model: In this attack we assume the attacker has
digital access to the camera software (e.g. camera driver, ROS
interface [22]) and is able to inject a change to the images
returned by the camera before they reach the grasp-quality
algorithm. The objective of the attack is that the computed
grasp, when executed on the real scene (which does not
have any physical change), has a low chance of success,
thus significantly increasing the chance of the product being
dropped and damaged. Potential incentives are the same as
those of the physical attack (i.e. economic or reputational).

3) Method: We formulate the attack as a multi-objective
optimization problem:

glzir(lin;igf ( QU,G(f(1,s))) , vl ) )
s.t. z € [0, width(I)], y € [0, height(1)]
p € [*13 1]

I(z,y) +pe[0,1]

where (x,y) could lie anywhere on the image, p is the pixel
intensity change, and the last constraint makes sure that the
new image’s pixel intensity is within limits. f(I,s) is a
function that returns a new image I’, such that I’(z,y) =
I(z,y) + p and I'(3,5) = I(i,j) for all (i,j) # (x,y).
Note that, in contrast to (1), this optimization problem is
minimizing the quality of the new grasp on the original
image [—this is because the physical world has actually not
changed as a reasult of the image attack. Similarly to the
physical attack, we also use SPEA2 to solve this optimization
problem.

IV. RESULTS

In this section we will evaluate the effectiveness of each
kind of attack on several Grasp Quality Networks: DexNet
2.0 [3] (which tackles single-object scenes); Dexnet 2.1 [4]
and FCGQCNN [6] (multi-object); and Dexnet 4.0 [5] (multi-
object and multi-gripper). The networks are responsible for
generating both @) and G.
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Fig. 2. Evolution of physical attacks’ grasp quality with the number of
algorithm generations, on an example image of the Dexnet 4.0 network.
Minimum, maximum and average over the population of individuals evolved
is shown.
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Fig. 3. Pareto front of the two objectives (grasp quality and size of the
attack) on a physical attack to an example image of the Dexnet 4.0 network.
The green curve is the Pareto front at the final generation of the evolutionary
algorithm, while gray lines show the evolution of the front from first to last
generation (light to dark).

We use the networks’ original implementations and pre-
trained models'. Since each network was trained on specific
cameras, object clutter conditions, and distances to the
workspace; and to make sure we are fair in our evaluation;
we apply our attacks to the example images provided by the
authors for each model (5-10 per model).

To solve the optimization problems (1) and (2) we used
SPEA?2 [20], which is an evolutionary Pareto optimizer specif-
ically geared at black-box multi-objective optimization. In
particular we used the implementation available in the DEAP
[21] Python library, with the following parameters: population
size 10, number of children per generation 100, and crossover
and mutation probabilities 0.6 and 0.3 respectively (which
are default recommended values). We ran the algorithm for
15 generations on all images of all networks, as this was
sufficient for convergence. In the physical attack we set a
radius limit of r < 30.

IAvailable at
ggcnn.

https://github.com/BerkeleyAutomation/
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Fig. 4. Three example physical attacks obtained by our method, on three different Grasp Quality Networks. Left: Dexnet 2.0. Center: Dexnet 4.0. Right:

FCGQCNN (with suction gripper).

Fig. 5. 3D view of an example physical attack on Dexnet 2.0 obtained by
our method. Radius of the attached sphere is 5.89, and leads grasp quality
to go from 0.327 to 0.0236. Left: original scene. Right: attacked scene.
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Fig. 6. Average and standard deviation of grasp quality (over the images
associated with each network), obtained after physical attacks computed by
our method. Results on the original images (before attack) also shown for
comparison.

A. Physical attack

Fig. 2 shows the evolution of the optimization of (1) with
the number of generations of the evolutionary algorithm, on
an example image on Dexnet 4.0. The figure has three curves
which plot the maximum, minimum, and average values over
the selected population at each generation. These curves show
that the quality of the grasps have converged by around the
Sth generation, and that the algorithm is able to obtain attacks
of varied effectiveness—with grasp quality between 0.6 and
0.85, while the quality on the original (not attacked) image
was approximately 1 (see max curve, generation 1).

Fig. 3 shows the corresponding Pareto front of the two
objectives (grasp quality and object radius). The figure shows
that there is a trade-off between the objectives: an object of
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Fig. 7. Evolution of digital (one-pixel) attacks’ grasp quality with the
number of algorithm generations, on an example image of the Dexnet 4.0
network. Minimum, maximum and average over the population of individuals
evolved is shown.
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Fig. 8. Pareto front of the two objectives (grasp quality and pixel intensity
change) on a digital attack to an example image of the Dexnet 4.0 network.
The green curve is the Pareto front at the final generation of the evolutionary
algorithm, while gray lines show the evolution of the front from first to last
generation (light to dark).

1-pixel radius is able to reduce grasp quality to about 0.85, but
increasing the radius towards 7 pixels approximately linearly
decreases grasp quality down to 0.6. It is also interesting to
note that increasing the radius to more than 7 pixels does
not lead to a decrease in grasp quality, indicating that the
worst-possible performance of the network is achieved by
this object radius.

Fig. 4 shows three concrete examples of physical attacks,
taken from the final population of the algorithm, on three
different models: Dexnet 2.0, Dexnet 4.0 and FCGQCNN.
The figure shows that the attacks lead the grasp networks to
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Fig. 9. Three example digital (one-pixel) attacks obtained by our method, on three different Grasp Quality Networks. Left: Dexnet 2.0. Center: Dexnet 4.0.
Right: FCGQCNN (with suction gripper). Note that zoomed-in images are normalized, and therefore even though the attacked pixels looks white/black, their
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Fig. 10. Average and standard deviation of grasp quality (over the images
associated with each network), obtained after digital attacks computed by
our method. Results on the original images (before attack) also shown for
comparison.

generate a different grasp location, and that this grasp can be
of considerably lower quality—indicating a high probability
of failure. The first example is of a 6-pixel radius sphere,
which is barely noticeable from the depth image even when
zoomed in, though it leads to a considerable drop in quality
of the new grasp (from 0.327 to 0.0236). The middle and
right images show examples where the attack is in a location
far away from the original grasp, indicating that attacks do
not have to be placed on the target object, thus making it
easy for an attacker to disturb a robot by just placing an extra
object on the workspace—whether or not that is the grasped
object. The image on the right shows that the FCGQCNN’s
new grasp is still of high quality, only 3% lower. However,
a 3% decrease may still represent considerable efficiency
decreases or economic damage if the network is being used
on a robot processing hundreds of thousands of objects per
day (e.g. in automated warehouse applications).

To better visualize the physical attacks, Fig. 5 shows a
3D view of the point cloud of a physical attack, which
corresponds to the example Dexnet 2.0 example on Fig. 4
(left). The attack is barely visible, noticeable only as a small
bump on the shade of the object.

Finally, we computed the average grasp quality, over all
images, obtained by the best-performing attack in each of the
networks. Fig. 6 shows the results, together with the original
grasp quality before the attack. There is a clear difference of
behaviour between the networks: attacks on Dexnet 2.0, 2.1

and 4 all have similarly high performance drops of around 0.4
in value. On the other hand, the fully-convolutional networks’
drop in quality is much lower. This suggests that these (newer)
networks are more robust to physical attacks, which could
be related to their fully-convolutional architecture and higher
reliability as reported in [6]. The drop was not as high as in
the other networks but still corresponds to a 2-9% decrease
depending on gripper type (parallel jaw or suction).

B. Digital attack

Fig. 7 shows the evolution of the optimization of (2) with
the number of generations of the evolutionary algorithm, on an
example image on Dexnet 4.0. The quality of the grasps have
converged by around the 13th generation, and the algorithm
is able to obtain attacks of quality down to 0.5—with a single
pixel change.

Fig. 8 is the Pareto front at all generations—and the last
one is shown in green. The curve shows that, similarly to
the physical attack, there is a trade-off between the amount
of pixel intensity change and the achieved grasp quality.
Interestingly, the intensity change does not have to be high
for the attack to be effective (maximum 0.1 change, while
depth images can take values between 0 and 1).

Fig. 9 shows three examples of digital attacks obtained by
our method. The examples illustrate that one-pixel changes
to the image lead to drastic performance drops in grasp
quality, from 0.689 to 0.0308 for Dexnet 2.0, 0.944 to 0.473
for Dexnet 4.0, and 0.939 to 0.678 for FCGQCNN (with a
suction gripper). The figure thus illustrates how FCGQCNN
is less robust to digital attacks compared to physical. The
grasp locations also change as a result of the pixel attacks,
as shown in the figure.

Finally, we computed the grasp quality obtained on the
attacked images, averaged over all images associated with
each network. Fig. 10 shows the results, together with the
original grasp quality before the attack. Similarly to the
physical attack, there are large performance drops of around
0.4 for Dexnet 2.0, 2.1 and 4.0. The figure shows that
FCGQCNN is not as robust to digital attacks as it was to
physical attacks. Performance drops are more pronounced
in the digital attack, at 7-10% depending on gripper type
(parallel jaw or suction). The reason for this is that in digital
attacks, the network does not have access to the image of
the real-world (i.e. the image before the pixel change) and
our method can exploit this to minimize the resulting grasp
quality.



V. CONCLUSIONS

In this paper we proposed two kinds of adversarial attacks
on Grasp Quality Networks, which are algorithms used to
rank grasps to be used by a robot based on image input.
One attack was physical, involving the optimization of the
size and location of a physical object to add to the robot’s
workspace, so as to make the robot’s new grasp be as likely
to fail as possible. The other attack was digital, assuming
access to the camera’s software or interface, and involving
the optimization of a single pixel’s location and intensity
change so as to make the new grasp fail. Both attacks could
lead to economic and reputational damage, thus making them
serious attacks to consider in the deployment of robots.

Our experiments showed that our attack methods can
drastically reduce quality of grasps (and hence probability
of success) by approximately 0.4 in quality units for both
physical and digital attacks (or equivalently up to 22 times
lower quality for physical and 74 times lower for digital
attacks). The newer grasp quality network FCGQCNN was
relatively more robust to physical attacks, being only 2-9%
less confident on new grasps depending on gripper type, but it
was less robust to digital attacks—which led to a decrease of
7-10%. Our results thus showed an advantage of the digital
attack, which is that it can exploit the network’s lack of
access to an image of the real world.

Future directions of research include the development and
evaluation of such attacks on real robots, the implementation
of multi-pixel attacks, and physical attacks with various
shapes. Importantly, this paper also shows there is a need for
further research on protections against adversarial attacks
to image-based grasping algorithms. Future work should
focus on the development of protections, for example through
attack detection methods, attack prevention through robust
algorithms, physical damage mitigation methods in case of a
successful attack, and last but not least work on increasing
awareness of cybersecurity aspects of robotics within the
community.
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