
Towards Explainable Road Navigation Systems

Khalid Alsheeb1 and Martim Brandão2

Abstract— Road navigation systems are important systems
for pedestrians, drivers, and autonomous vehicles. Routes
provided by such systems can be unintuitive, and may not
contribute to an improvement of users’ mental models of
maps and traffic. Automatically-generated explanations have
the potential to solve these problems. Towards this goal, in this
paper we propose algorithms for the generation of explanations
for routes, based on properties of the road networks and traffic.
We use a combination of inverse optimization and diverse
shortest path algorithms to provide optimal explanations to
questions of the type “why is path A fastest, rather than path
B (which the user provides)?”, and “why does the fastest path
not go through waypoint W (which the user provides)?”. The
explanations reveal properties of the map—such as speed limits,
congestion and road closure—that are not compatible with
users’ expectations, and the knowledge of which would make
users prefer the system’s path. We demonstrate the explanation
algorithms on real map and traffic data, and conduct an
evaluation of the properties of the algorithms.

I. INTRODUCTION

Road navigation systems, which plan routes for driving,
cycling, or walking paths, are widespread systems present in
cars, smartphones, and autonomous vehicle software. Google
Maps services, for example, had more than one billion
monthly active users in 2020 [1]. Routes computed by such
systems can often be unintuitive, particularly when users
of navigation systems already have partial knowledge of
the area they are navigating. This is because maps, road
networks, speed limits, circulation rules and real-time traffic
factors can interact in complex ways. The premise of this
paper is that automatically generated explanations for routes
may potentially help users understand navigation decisions,
improve their mental models [2] of maps and traffic, and
help calibrate their trust in navigation systems.

In this paper we propose algorithms that automatically
generate explanations for questions of the type “why is path
A fastest, rather than path B (which the user provides)?”, and
type “why does the fastest path not go through waypoint W
(which the user provides)?”. We leverage a combination of
inverse optimization methods [2], [3] and diverse shortest
path methods [4] to generate explanations of optimal length,
i.e. that refer to a minimum possible amount of factors in
the road network. Our explanations can justify the optimality
of paths based on a variety of factors, from road closure
and permitted traffic direction (one-way/two-way), to speed
limits and congestion. The methods work by computing a
minimal set of changes to road network parameters (i.e.

1Khalid Alsheeb is with King’s College London, London, UK.
khalid.alsheeb@kcl.ac.uk

2Martim Brandão is with King’s College London, London, UK.
martim.brandao@kcl.ac.uk

congestion, permitted travel direction, temporary closure,
speed limits) that lead an input path to become optimal.
The waypoint explanation problem is more complex and
requires finding the optimal explanation across all possible
paths through the waypoint—for which we develop a new
anytime asymptotically-optimal algorithm.

The contributions of this paper are thus the following:
1) We propose a method based on Inverse Shortest Paths

to compute explanations for why a user-provided path
is not optimal;

2) We propose an asymptotically-optimal anytime algo-
rithm to compute the explanations for why a user-
provided waypoint is not part of the optimal path;

3) We demonstrate the capabilities of the methods on real
map and traffic data; and quantitatively evaluate the
anytime algorithm against a sub-optimal approach.

II. RELATED WORK

Recent studies have shed light into challenges and re-
quirements for explainability in navigation systems, both in
smartphone apps [5] and Autonomous Vehicles (AVs) [6],
[7]. Most related to our paper, Chazette et al. [5] identified
“why was my route chosen?” as a common understandabil-
ity issue in navigation systems, and concluded that route
explanations need to provide information about congestion,
closures, and other factors—as we implemented in this
paper. The study further showed that navigation systems
with context-sensitive explanations lead to increased system
use and satisfaction with routes. In AVs, Omeiza et al. [6]
conducted a survey of explanations in autonomous driving in
terms of motivations for their use, categories of explanations,
datasets, challenges, and other issues. The survey described
explainability as important in both planning and control of
AVs, relating explanations in these contexts to factors of road
networks, road signs, and road quality. Similarly to our paper,
it identifies questions such as “why did you turn left?” as
important for stakeholders. Motivated by cognitive and social
studies of explanations [8], in this paper we focus specifically
on contrastive explanations—that contrast the systems’ plan
to a user-specified plan or waypoint (e.g. answering “why
did you turn left instead of right?”, “why did you not take
road W?”).

Our paper is also related to efforts towards improving
the user experience of traditional vehicle and pedestrian
navigation systems, such as new interfaces that improve
the acquisition of spatial knowledge [9] and systems that
improve the communication and following of paths [10].

The methods we propose in this paper are related to the
literature on inverse shortest paths [3] and their use for

path-finding explanations in robotics and computer game
contexts [2], as well as for multi-agent path finding [11].
They are also aligned with much recent work on the topic of
eXplainable AI Planning (XAIP) [12], [13], which focuses
on task (instead of path) planning. Our explanation methods
also relate to recent work on adversarial attacks on networks
[14], where the goal is to compute a minimal set of edges to
remove from a graph so as to make a desired path optimal.

Finally, our anytime method makes use of an adaptation of
a diverse shortest path algorithm [4]. Diverse shortest paths
algorithms [4], [15] compute a set of short paths between
the same start and goal locations that are different from each
other, and we use them here as a way to asymptotically obtain
all paths that traverse a given waypoint.

III. BACKGROUND

A. Multi-Directed Graph

A directed graph is a graph G = (V,E), where E is the
set of edges and V the set of nodes. Edges are defined in a
specific direction, so if u 6= v for u, v ∈ V , then (u, v) 6=
(v, u) for (u, v), (v, u) ∈ E. A multi-directed graph is a
directed graph where a pair of nodes can have multiple edges
between them in the same direction.

B. Shortest Path

A path is a sequence of edges that connect a set of nodes,
starting from a start node and ending with a goal node. The
shortest path problem can be formulated as a linear program:

min
xxx

wwwTxxx (1a)

s.t. Axxx = bbb, (1b)

xxx ∈ R|V |0+ , (1c)

where xj = 1 if the edge ej belongs to the shortest path,
xj = 0 otherwise; Aij equals 1 if vi is the source of ej , −1
if vi is the target of ej , and 0 otherwise; bi equals 1 if vi is
the start node, −1 if vi is the goal, and 0 otherwise.

C. Inverse Shortest Path (ISP)

The goal of the inverse shortest path problem is to obtain a
new weight vector www

′
which turns a user-defined path xxx

′
into

the shortest path in the new graph—while making the least
possible changes to the original weights. It can be formulated
as a linear program [3]:

min
www
′
,πππ,λλλ

‖www
′
−www‖1 (2a)

s.t.
∑

i
Aijπi = w

′

j ∀j:x′j=1, (2b)∑
i
Aijπi + λj = w

′

j ∀j:x′j=0, (2c)

λj > 0 ∀j:x′j=0, (2d)

www
′
∈ R|E|+ , λλλ ∈ R|E|, πππ ∈ R|V |. (2e)

The first and second constraints are used to enforce com-
plementary slackness conditions, and λλλ and πππ are the dual
variables of the shortest path problem.

IV. METHODS

A. Road network graphs

As in the ISP formulation (2), in this paper we model road
networks as directed graphs. Furthermore, graphs are such
that for every edge ej = (u, v) ∈ E there exists an edge in
the opposite direction (v, u) ∈ E. Each edge ej is associated
with a variable nj ∈ {0, 1} which indicates whether driving
in that direction is normally impermissible due to traffic rules
(i.e. one-way roads will have one of the edges impermissible
nj = 1), as well as a variable cj ∈ {0, 1} which indicates
temporary road closure. We further assume that the objective
of our road navigation system is to minimize travel time.
Therefore, we model edge weights as travel times—defined
as a function of driving speed, distance, temporary road
closure, and normal direction impermissibility. We compute
the weight of an edge as:

wj = sj lj + njM + cjM, (3)

where

• sj = θ−1j is the inverse of the current flow speed θj
(obtained from live traffic data), which for simplicity is
truncated to legal limits θj ∈ [0, θmax

j], where θmax
j is

the speed limit of road j;
• lj ∈ R0+ is the edge length in meters;
• nj ∈ {0, 1} indicates whether driving on edge j is

normally impermissible (depending on whether the road
is one-way or two-way);

• cj ∈ {0, 1} indicates whether traffic on edge j is
temporarily closed;

• and M ≈ ∞ is a large number (e.g. M = 106).

In this paper we consider generating explanations for two
kinds of why questions:

1) “Why don’t you take path xxx′ instead?”, where xxx′ is
a user-defined path. We will call this the “full-path
explanation problem”.

2) “Why don’t you go through vw instead?”, where vw ∈
V is a user-defined waypoint node. We will call this
the “waypoint explanation problem”.

B. Full-Path Explanation Problem (Why not path B?)

We model the full-path explanation problem as an ISP:
where the goal is to find the lowest number of changes to a
road network that lead the desired path to become optimal.
These changes serve as an explanation, e.g. “the path is not B
because there is traffic in road X and Y”; or “the path is not B
because road Z is one-way”. Our explanations consider speed
limits, the presence of traffic (road congestion), normally
permitted directions of travel, and temporary road closure.

To allow for an ISP formulation, we define the lifting of
speed limits bm

′

j , the removal of congestion bs
′

j , the normal
impermissibility of travel in an edge’s direction n′j , and
temporary road closure c′j as boolean variables associated
with each edge. The explanation-ISP will work by finding
changes to these variables that lead to the desired path

becoming optimal. We express the explanatory weight w′j
of an edge ej as a function of these variables, by:

w′j =

{
(bm

′

j m+ (1− bm′j)mj)lj + (n′j + c′j)M if mj

sj
≥ r

(bs
′

j mj + (1− bs′j)sj)lj + (n′j + c′j)M if mj

sj
< r

,

(4)
where mj =

1
θmax
j

is the inverse of the speed limit of road j,
m is the maximum possible speed limit in any road (typically
the speed limit of highways), and r ∈ [0, 1] is a parameter
which defines the speed ratio at which a road is considered
congested.

In simple terms, the equation makes it so that:
• if an edge is congested (i.e. mj

sj
< r) then we allow

congestion to be part of the explanation (by setting
bs
′

j = 1 and thus removing congestion, i.e. setting traffic
speed to the road’s current speed limit);

• if an edge is not congested (i.e. mj

sj
≥ r) then we allow

the road’s speed limit to be part of the explanation (by
setting bm

′

j = 1 and thus lifting the road’s speed limit
to the maximum possible m);

• regardless of congestion, we allow normal impermissi-
bility of travel or temporary road closure to be part of
the explanation (by setting n′j or c′j).

By replacing w′j in the ISP formulation (2) by the equation
above (4), the ISP becomes a Mixed-Integer ISP to which
we call “Road-Graph Inverse Shortest Path” (RGISP):

minimize
nnn
′
, ccc
′
, bs
′

bs
′

bs
′
, bm

′
bm
′

bm
′
,πππ,λλλ

‖nnn
′
−nnn‖1 + ‖ccc

′
− ccc‖1 + ‖bs

′
bs
′

bs
′
‖1 + ‖bm

′
bm
′

bm
′
‖1

(5a)
subject to∑
i
Aijπi = s

′

j lj + n
′

jM + c
′

jM, ∀j:x′j=1 ∧ mj/sj<r
,

(5b)∑
i
Aijπi = m

′

j lj + n
′

jM + c
′

jM, ∀j:x′j=1 ∧ mj/sj>r
,

(5c)∑
i
Aijπi + λj = s

′

j lj + n
′

jM + c
′

jM, ∀j:x′j=0, (5d)

λj > 0, ∀j:x′j=0, (5e)

n
′

j = nj , c
′

j = cj , ∀j:x∗j=1 ∧ x′j=0, (5f)

n
′

j = 0, c
′

j = 0, ∀j:x′j=1, (5g)

n
′
n
′
n
′
∈ {0, 1}|E|, c

′
c
′
c
′
∈ {0, 1}|E|, bs

′
bs
′

bs
′
∈ {0, 1}|E|,

bm
′

bm
′

bm
′
∈ {0, 1}|E|, λλλ ∈ R|E|, πππ ∈ R|V |, (5h)

where:
• s′j = bs

′

j mj + (1− bs′j)sj as in (4)
• m′j = bm

′

j m+ (1− bm′j)mj as in (4)
• nnn is the normal impermissibility of travel in the original

graph, and nnn
′

is the variable for the new graph;
• ccc is road closure in the original graph, and ccc

′
is the

variable for the new graph.
To obtain the actual explanation from the output of RGISP

(i.e. from the values n′n′n′, c′c′c′, bs
′

bs
′

bs
′
, bm

′
bm
′

bm
′
), we simply compare the

original and new values (cj vs c′j , nj vs n′j , 0 vs bs
′

j , 0 vs

bm
′

j) to detect which edge properties have changed in the new
graph. Then, we fill in an explanation text-template with the
names of the roads and the associated explanation, e.g.: “the
desired path is not optimal because road X is congested/low-
speed-limit/one-way/temporarily-closed”.

C. Waypoint Explanation Problem (Why not waypoint W?)

Next, we propose a method to explain why the shortest-
path does not traverse a user-provided waypoint vw. For this
purpose, we need to find whether there exists a small set of
changes to the graph that lead to an optimal path xxx∗ that
crosses vw, i.e.∃j : x∗j = 1 ∧ vw ∈ ej .

One naive solution is to compute the shortest path through
vw given G by concatenating the shortest paths from the start
to vw and vw to goal—and then apply RGISP. However, such
a strategy would be sub-optimal, since a shorter explanation
may exist which makes changes on edges not lying over the
concatenated path. The strategy is also incomplete, since it
may be impossible to make the concatenated path optimal,
but there may exist another path travelling through vw which
can be made optimal.

Instead, we propose an anytime asymptotically-optimal
method: RGISP∗. The method works by successively calling
RGISP on diverse paths that traverse waypoint vw, until
exhausting all possible paths that traverse the waypoint. It is
anytime because it can be stopped at any point in time and
reveal the least-change explanation found so far (obtained
through one of the paths traversing vw).

Pseudo-code for the algorithm is shown in Algorithm 1.
Basically, first the algorithm will use the naive solution
described in the previous paragraph to obtain an initial (sub-
optimal) explanation (lines 4-7). Then, while the runtime
of the algorithm is below a user-provided limit tmax, it will
obtain a new path through the waypoint (line 9 “NextPath”)
and run RGISP on this path (line 11). The algorithm keeps
track of the lowest-length explanation found so far (lines
12-13) in order to return it once the runtime has expired.
Function ‘’ShortestPathThroughWaypoint” simply concate-
nates the shortest path from the start to the waypoint, with
the shortest path from the waypoint to the goal.

This anytime algorithm relies on a function “NextPath”
which incrementally enumerates all paths through waypoint
vw. For this purpose, we use an adapted version of the
diverse path finding method of [4], as shown in Algorithm 2.
Essentially, the algorithm iteratively and randomly removes
edges that lie along the shortest-paths-through-the-waypoint.
To do this, it searches over graphs using a branching factor b,
where each child graph will remove an edge from its parent
graph (lines 8-10). Edges are picked by random sampling
from the shortest-path-through-the-waypoint of the parent
graph—in order to invalidate that path and lead to a new
shortest-path-through-the-waypoint. To guarantee complete-
ness (i.e. that all paths through the waypoint are eventually
obtained), we restart the procedure once the graph queue is
exhausted (lines 3-5). The search begins from a graph Go,
which is obtained from G by making traffic along all edges
permissible cj = 0∀j (line 3 “OpenAllEdges”). This is so

Algorithm 1 RGISP∗

Input: Road graph G = (V,E); start, waypoint and goal
nodes, vs, vw, vg ∈ V ; maximum runtime tmax > 0.
Output: Explanation graph G∗; explanation length z∗.

1: U ← EmptyQueue()
2: G∗ ← ∅; z∗ ←∞
3: xxxp ← ShortestPathThroughWaypoint(G, vs, vw, vg)
4: if xxxp not empty then
5: (Ge, z)← RGISP(G,xxxp)
6: if z 6= null ∧ z < z∗ then
7: G∗ ← Ge; z∗ ← z

8: while Runtime() 6 tmax ∧ z∗ > 0 do
9: xxx′p, U ← NextPath(G, vs, vw, vg, U)

10: if xxx
′

p not empty then
11: (Ge, z)← RGISP(G,xxx

′

p)
12: if z 6= null ∧ z < z∗ then
13: G∗ ← Ge; z∗ ← z

14: return G∗, z∗

as to be able to obtain explanations that focus on traffic-
permissibility (i.e. which change permissibility in one or
more edges, thus obtaining a new shortest path that traverses
those edges and satisfies the user’s waypoint expectation).

D. Map pre-processing

Map services such as OpenStreetMap1 typically provide
road network data in multi-directed graph form, to account
for locations (e.g. squares) where there are multiple ways
to traverse between adjacent nodes (e.g. around the square
clockwise or counter-clockwise). Without loss of generality,
we convert multi-directed graphs to directed graphs as a pre-
processing step. We do this by creating intermediate nodes
along multi-directed edges.

V. RESULTS

A. Experimental Setup

We conducted several experiments to demonstrate and
evaluate our explanation methods. The experiments use a
road graph of 1km radius, centered around King’s College
London Bush House campus, London, UK, and obtained at
1:30 am on the 7th of July, 2022. We used OSMnx2 to obtain
road graph data from OpenStreetMap, and we used TomTom
API3 to gather real-time data (i.e. road closure and current
traffic speed). All our experiments use a traffic ratio param-
eter r = 3/4, and they use the United Kingdom’s maximum
legal speed limit of m = 70 miles per hour for speed-limit
explanations. For the anytime algorithm RGISP∗ we set a
branching factor of b = 2 and a computation time budget of
tmax = 5 minutes. We provide source code and a working
demo at https://github.com/khalid-alsheeb/
explainable-road-navigation.

1https://www.openstreetmap.org/
2https://osmnx.readthedocs.io
3https://developer.tomtom.com

Algorithm 2 NextPath (Incremental Path Enumeration)
Input: Road graph G = (V,E); start, waypoint and goal
nodes, vs, vw, vg ∈ V ; auxiliary queue U .
Parameters: Branching factor b > 1.
Output: Path xxxnext

p which traverses start, waypoint and goal
nodes; updated queue U .

1: xxxnext
p ← ∅

2: if U empty then
3: Go ← OpenAllEdges(G)
4: xxxop ← ShortestPathThroughWaypoint(Go, vs, vw, vg)
5: Enqueue(U, (xxxop, G

o))

6: (xxxup , G
u)← Dequeue(U)

7: for i in 1, ..., b do
8: e← UniformSampling(xxxup)
9: E

′ ← AddObstacles(Eu, e)
10: G

′ ← (V,E
′
)

11: xxx
′

p ← ShortestPathThroughWaypoint(G
′
, vs, vw, vg)

12: if xxx
′

p not empty then
13: Enqueue(U, (xxx

′

p, G
′
))

14: if xxxnext
p not empty then

15: xxxnext
p ← xxx

′

p

16: return xxxnext
p , U

We used CVXPY [16] to formulate the optimization
problems, and Gurobi4 as the solver. All experiments were
run on a 2018 MacBook Pro, 2.6 GHz 6-Core Intel Core i7
processor, 16GB RAM, macOS Big Sur OS.

B. Example of Full-Path Explanation

Fig. 1: Example of a full-path explanation problem. A user
asks for a path from the green marker to the red marker.
Graph edges are shown in blue, and the optimal path is shown
in red. The user is already partially familiar with the map,
and is confused by the path proposed. The user then manually
provides the path in yellow and asks “why not this path?”.
Our method explains that is because the roads in pink are
either closed or one-way roads.

(a) Naive solution by RGISP (b) Solution by RGISP∗

Fig. 2: Example waypoint explanation. A user asks for a path from the green marker to the red marker. Graph edges are
shown in blue, and the optimal path is shown in red. The user then manually provides a waypoint (yellow marker) and asks
“why not a path through the yellow marker?”. Our method explains that is because the roads in pink are one-way roads. A
naive solution using RGISP (with the shortest path through the waypoint as desired path) leads to a complex explanation
with many road changes, while our anytime asymptotically-optimal RGISP∗ leads to a simpler explanation (length 11 vs 4).

(a) Heavy traffic and a one-way road. (b) Speed limit

Fig. 3: Example waypoint explanations using RGISP∗. A user asks for a path from the green marker to the red marker.
Graph edges in blue, optimal path in red. The user then manually provides a waypoint (yellow marker) and asks “why not
a path through the yellow marker?”. Our method explains that is (a) because Theobalds Road (pink) has heavy traffic and
Jockey’s Fields (pink) is a one-way road; (b) because Gray’s Inn Road (pink) has a low speed limit. Had these facts not
been true then the shortest paths would have been the ones in yellow—satisfying the user’s waypoint preferences. Orange
sections are those that are common between the original and waypoint-satisfying paths.

Figure 1 shows an example of a full-path explanation
obtained with RGISP. For this purpose, we manually pro-
vided as input the start and goal locations of a hypothetical
trip (green and red marker respectively). The shortest path
between these two nodes is shown in red. This path is very
long compared to a straight-line path, and so we manually
provided a shorter straight-line path (shown in yellow), and
ran RGISP. RGISP provides an explanation for the question
“why not this path (in yellow) instead?”. As described
previously, our method does this by finding the smallest set
of changes to the graph that lead the yellow path to become

4https://www.gurobi.com/products/gurobi-optimizer/

optimal. RGISP provided the following explanation:

“The desired path is not optimal because Endell Street is
currently closed; and Long Acre (0-1) is a one-way road.”

Endell Street and Long Acre are shown in pink on Fig. 1.

C. Examples of Waypoint Explanation

Fig. 2 shows an example of a waypoint explanation
obtained with our methods. We manually provided as input
the start and goal locations of a hypothetical trip (green and
red marker respectively). The shortest path between these
two nodes is shown in red. We then manually provided
an expected waypoint (yellow marker), so as to ask the

Problem set O Problem set A
0

50

100

150
N

u
m

b
er

of
p

ro
b

le
m

s
so

lv
ed

100

71

100 100

RGISP

RGISP*

Problem set O Problem set A
0

10

20

30

E
xp

la
n

at
io

n
C

os
t

RGISP

RGISP*

Fig. 4: Success rate and explanation cost, on waypoint
explanation problems, of the anytime asymptotically-optimal
RGISP∗ vs a naive RGISP strategy.

question “why not a path through the yellow marker?”. A
naive solution using RGISP, with the shortest-path-through-
the-waypoint as desired path, leads to an explanation with
many road changes (11 changes shown in pink on Fig. 2(a)):

“The desired path is not optimal because Whitcomb
Street (0-1); Charing Cross (0-3); Whitehall (0-2); and
Northumberland Avenue (0-1) are one-way roads.”

Numbers in brackets indicate sections of the roads. The new
shortest path is shown in yellow in the figure.

Fig. 2(b) shows the explanation computed by our anytime
asymptotically-optimal RGISP∗, after a 20s computation
time budget. The anytime algorithm managed to obtain a
considerably shorter (i.e. lower-cost) explanation with only
4 changes:

“The desired path is not optimal because Strand is not
closed to traffic; and Whitcomb Street (0-1) and Milford
Lane are one-way roads.”

Finally, in Fig. 3, we show examples of user queries that
would lead to explanations centered on traffic (Fig. 3(a)):

“The desired path is not optimal because Theobalds Road
(0-3) has heavy traffic; and Jockey’s Fields is a one-way
road.”

and on a low speed limit (Fig. 3(b)):

“The desired path is not optimal because Gray’s Inn Road
(0-1) has a speed limit of 20 mph.”

D. Quantitative Evaluation on Waypoint Problems

We quantitatively evaluated our methods using 200 ran-
domly generated waypoint explanation problems (Problem
set O and A). Problem set O (waypoint problems solvable
by the naive RGISP strategy) consists of 100 explanation
problems obtained by randomly selecting start, goal and way-
point nodes, solving the corresponding problem by RGISP
(i.e. with the shortest-path-through-the-waypoint as desired
path), and storing the problem as part of O if RGISP was
able to obtain a solution. Problem set A (waypoint problems
solvable by the anytime algorithm RGISP∗) consists of 100
explanation problems obtained by randomly selecting start,

goal and waypoint nodes, solving the corresponding problem
with RGISP∗, and storing the problem as part of A if RGISP∗

was able to obtain a solution within its time budget.
Fig. 4 shows that the anytime algorithm was able to

solve all 100 waypoint explanation problems that the RGISP
strategy was able to solve (set O). However, the naive RGISP
strategy was only able to solve 71 problems out of the 100
that RGISP∗ could solve. The right side of Fig. 4 further
shows that the average explanation cost (i.e. value of the
optimization objective in equation (5)) of both strategies. The
figure shows that the anytime method, as expected by design,
leads to lower-cost explanations.

Fig. 5 shows some examples of waypoint explanation
problems that can be solved by both strategies. The first
graph shows how, in some situations, one extra iteration
by the anytime algorithm is enough to provide a better
explanation. The second and third graphs show problems
where more iterations are required to refine the explanation.

VI. CONCLUSION

In this paper we proposed two algorithms, based on inverse
optimization methods, to solve two explanation problems
in road navigation systems: 1) the full-path explanation
problem, where the goal is to answer why a user-specified
path is not optimal; and 2) the waypoint explanation problem,
where the goal is to answer why the optimal path does
not travel through a user-specified waypoint. In order to
automatically generate such explanations, we rely on an
inverse shortest path method that finds minimal-changes to
road network parameters (i.e. congestion, permitted travel
direction, temporary closure, speed limits) that lead an input
path to become optimal. For full-path explanation problems
this input path is the user-specified path, while for waypoint
problems it is the set of all paths that travel through the user-
specified waypoint. To obtain this set of paths incrementally
in an anytime manner, we adapted an existing diverse shortest
paths algorithm. We then demonstrated how the algorithms
are capable of computing various kinds of explanations
through concrete examples on OpenStreetMap data. We also
showed how the anytime asymptotically-optimal algorithm
for waypoint problems (RGISP∗) leads to shorter explana-
tions than naive strategies, and their length decreases with
computation time as designed.

This paper thus paves the way for explainable road naviga-
tion systems: such as route planners for AVs and traditional
vehicles, as well as road navigation apps for smartphones.

One important direction of research includes the design of
computationally faster explanation algorithms, for example
by the use of incremental optimization methods such as
those proposed in [2]. In order to guarantee good user
experience, future research should involve users of navigation
systems in the design of the “why questions” and algorithmic
explanations. This could be done, for example, through user
studies that identify the kind of mental models held by
road users, the level of detail that is most appropriate in
explanations, and the navigation parameters most relevant
for explanation. Concretely, we should look to identify the

1 5 10 15 20 25 30 35 40 45

Iterations

0

5

10

15

E
xp

la
n

at
io

n
C

os
t

RGISP

RGISP*

1 5 10 15 20 25 30 35 40 45

Iterations

0

5

10

15

20

E
xp

la
n

at
io

n
C

os
t

RGISP

RGISP*

1 5 10 15 20 25 30 35 40 45

Iterations

0

5

10

15

20

E
xp

la
n

at
io

n
C

os
t

RGISP

RGISP*

Fig. 5: Cost of waypoint explanations obtained by a naive RGISP strategy, and by the anytime asymptotically-optimal
RGISP∗. The cost indicates the number of changes made to graph variables, as seen in equation (5).

relative usefulness of each parameter we have used (speed
limits, road closure, permitted travel directions), but also
to identify the need of other parameters such as number
of turns, traffic lights, average traffic speed, congestion
probability, etc. User studies should also be conducted to
understand whether the explanations introduced in this paper
improve users’ mental models of maps (similarly to work in
robotics or computer game settings [2]), and whether this
transfers to better navigation decisions without the system—
or to greater delegation to, and eventually dependency on,
the navigation systems.

REFERENCES

[1] Google maps metrics and infographics. [On-
line]. Available: https://sites.google.com/a/pressatgoogle.com/
google-maps-for-iphone/google-maps-metrics

[2] M. Brandao, A. Coles, and D. Magazzeni, “Explaining path plan
optimality: Fast explanation methods for navigation meshes using
full and incremental inverse optimization,” in Proceedings of the
International Conference on Automated Planning and Scheduling
(ICAPS), Aug 2021, pp. 56–64.

[3] R. K. Ahuja and J. B. Orlin, “Inverse optimization,” Operations
Research, vol. 49, no. 5, pp. 771–783, 2001.

[4] C. Voss, M. Moll, and L. E. Kavraki, “A heuristic approach to
finding diverse short paths,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2015, pp. 4173–4179.

[5] L. Chazette, V. Klös, F. Herzog, and K. Schneider, “Requirements on
explanations: a quality framework for explainability,” in 2022 IEEE
30th International Requirements Engineering Conference (RE). IEEE,
2022, pp. 140–152.

[6] D. Omeiza, H. Webb, M. Jirotka, and L. Kunze, “Explanations in
autonomous driving: A survey,” IEEE Transactions on Intelligent
Transportation Systems, 2021.

[7] T. Schneider, J. Hois, A. Rosenstein, S. Ghellal, D. Theofanou-Fülbier,
and A. R. Gerlicher, “Explain yourself! transparency for positive ux
in autonomous driving,” in Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, 2021, pp. 1–12.

[8] T. Miller, “Explanation in artificial intelligence: Insights from the
social sciences,” Artificial Intelligence, vol. 267, 2019.

[9] H. Huang, T. Mathis, and R. Weibel, “Choose your own route–
supporting pedestrian navigation without restricting the user to a
predefined route,” Cartography and Geographic Information Science,
vol. 49, no. 2, pp. 95–114, 2022.

[10] I. Fellner, H. Huang, and G. Gartner, “turn left after the wc, and
use the lift to go to the 2nd floorgeneration of landmark-based route
instructions for indoor navigation,” ISPRS International Journal of
Geo-Information, vol. 6, no. 6, p. 183, 2017.

[11] M. Brandao and Y. Setiawan, “’why not this mapf plan instead?’
contrastive map-based explanations for optimal mapf,” in ICAPS 2022
Workshop on Explainable AI Planning (XAIP), June 2022.

[12] M. Fox, D. Long, and D. Magazzeni, “Explainable planning,” arXiv
preprint arXiv:1709.10256, 2017.

[13] T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambhampati, “Plan
explanations as model reconciliation: Moving beyond explanation as
soliloquy,” in International Joint Conference on Artificial Intelligence
(IJCAI), 2017, pp. 156–163.

[14] B. A. Miller, Z. Shafi, W. Ruml, Y. Vorobeychik, T. Eliassi-Rad, and
S. Alfeld, “Pathattack: Attacking shortest paths in complex networks,”
in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2021, pp. 532–547.

[15] H. Aljazzar and S. Leue, “K*: A heuristic search algorithm for finding
the k shortest paths,” Artificial Intelligence, vol. 175, no. 18, pp. 2129–
2154, 2011.

[16] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

