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Abstract 

Tracking an object's 3D position and orientation from a 

color image can been accomplished with particle filters if 

its color and shape properties are known. Unfortunately, 

initialization in particle filters is often manual or random, 

thus rendering the tracking recovery process slow or no 

longer autonomous. A method that uses image data to 

generate likely pose hypotheses for known objects is 

proposed. These generated pose hypotheses are then used 

to guide visual attention and computer resources in a 

“top-down” tracking system such as a particle filter: 

speeding up the tracking process and making it more 

robust to unpredictable movement. 

1. Introduction 

Object pose estimation is a problem of great 

importance in applications such as robotics, 

video-surveillance or augmented reality. Often in these 

applications it is possible to know the object’s model, for 

example its shape or color information, beforehand. 

A class of methods used for 3D model-based object 

tracking is based on particle filters. These represent the 

distribution of an object’s 3D pose as a set of weighted 

hypotheses (particles) [1]. Their advantage, to contrast 

with Kalman filtering, is the fact that the distribution of 

hypotheses is not restricted to Gaussian, and a random 

distribution is assumed [2]. Hypotheses are tested by 

explicitly projecting the object model in the image and 

comparing actual image pixel information. This is an 

example of a top-down approach to tracking: they depend 

not only of image information but on knowledge such as 

the object's typical kind of movement and expected 

location in space. In every frame a better fit for the object 

position is looked for, according to appropriate motion 

and noise distributions. 

Initialization (or re-initialization), recovery after 

occlusions and dealing with unpredictable movement are, 

though, problems in particle (and basically all) top-down 

filters. When no a-priori information of an object's 

location is known, particles are scattered randomly in 

space – making the method difficult or slow to converge. 

Even if a high number of particles is available, it is 

difficult for the method to converge when it depends on 

hitting the right area of pose space by chance. In an 

attempt to address this problem, the method proposed in 

this paper focuses on quickly and intelligently choosing 

where to place particles and start or restart looking for the 

target, based on image information – to which we call a 

bottom-up approach to pose estimation. 

A few works have been made that explore this idea for 

2D tracking. [3] uses such an approach as a way to solve 

the problem of 2D tracking of people and their body parts: 

a bottom-up layer identifies candidates for body parts; 

while the top-down process searches for the whole body, 

constituted by several detected parts – assuming humans 

usually adopt certain poses. In [4], on the other hand, 

Adaboost is used as a bottom-up detector of objects 

(hockey players) and deals with the appearance of new 

players in the image. Then, a “mixture particle filter” 

(MPF) is used in the upper layer to track multiple players 

at the same time. This proposal’s goal is most similar to 

the aforementioned ones, although we extend these 

paradigms to complete 6 degree-of-freedom pose 

estimation and tracking of 3D objects. 

2. Bottom-up pose estimation 

In this paper, pose hypotheses are generated in an 

image driven – bottom-up – manner and used on a 3D 

tracking process through particle filters. This generalizes 

the concept of visual attention in the sense that 

computational resources are allocated to areas of the 

whole pose space, 3D position and orientation. With the 

integration of both approaches, top-down's precision is 

kept, while both initialization speed and robustness in 

object reappearance is obtained from the bottom layer. 

The proposed method is divided in 3 parts: 

segmentation, 3D localization and particle generation. 

2.1. Segmentation 

The first step in our method consists in segmenting the 

objects by color. We do so through color segmentation on 

the HSV color-space of the image, which was chosen in 

order to better achieve luminosity invariance. A color 

histogram of the object is known and so a Histogram 

Backprojection algorithm [5] is applied, building a map 

representing the likelihood of each pixel belonging to the 

object. 

A scale-space of this backprojection map is created to 

better deal with the simultaneous presence of both small 

and large objects. Each scale is computed by filtering the 

map with a Gaussian function of different variance. 

The segmentation algorithm used in each scale was 

obtained through a flood-fill method using local maxima 

of the map as seeds. Instead of the standard stop criteria, 



Sauvola's binarization formula [6], usually used in 

document segmentation, was used to adapt the boundary 

detection threshold to the region’s standard deviation. 

After segmentation is completed in each scale, the 

results are condensed in a single binary map through an 

OR of all scales. 

2.2. Localization 

In order to estimate 3D pose from a segmented region, 

we compare its shape with trained ones. Since we use the 

perspective camera model, this training stage can be made 

independent of object position in the image. In run-time, 

if objects are not centered, we simulate a camera rotation 

to the centroid of the object. Training will therefore be 

made with the object centered in the image and a database 

is built that matches 2D shape to 3D orientation. The 

measured orientation can then be rectified using the 

equations for projecting rotated points in a pan-tilt camera 

[7]: 
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where ct,st,cp,sp represent cos(t), sen(t), cos(p), sen(p), 

respectively; (x0,y0) the initial point and (x1,y1) the point 

after a rotation of p and t degrees on a pan/tilt camera. We 

approximate the rotation of all pixels by the rotation of 

their average – the centroid. If we assume training is made 

with the object centered in the image then the initial point 

is equal to the origin (0,0) – and we compute the camera 

rotation that leads to moving that point to (x1,y1): 
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where (x1,y1) are the region’s normalized centroid 

coordinates and p,t are the pan and tilt rectification angles 

which, when applied after the measured rotation, give us 

the true orientation of the object. An orientation of the 

object should be defined as a single rotation sequence (as 

opposed to a rotation sequence followed by another of 

rectification). We therefore compute the angles of rotation 

Yaw, Pitch and Roll that define object orientation, from 

the final rotation matrix obtained from the composition of 

measured and rectification rotations. 

Because perspective projection deforms the object as it 

moves away from the image center, a change of 

coordinates is made to center the region before computing 

its shape features. A homogeneous transformation with p 

and t as the rotation angles will produce such result, thus 

rendering orientation estimation independent of position. 

 

After the object’s final orientation coordinates are 

computed, we can compute depth (Z) from the area of the 

projection, defined as: 
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(X,Y) being the coordinates of the object's points in the 

world, I(X,Y) the object’s shape represented on a binary 

image, and fx,fy intrinsic parameters of the perspective 

projection. We approximate that the object's points are all 

at the same depth, projecting on a plane which is parallel 

to the image. If so, depth (Z coordinate) can be computed 

from the relation of the segmented region's area and 

trained area and depth, which can both be stored in the 

database of projections. 
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Finally, X and Y are computed from the geometric 

center of the region, by assuming that the 3D geometric 

center of the object projects on the 2D center of the region 

given by (x,y)=(fx.X/Z, fy.Y/Z). 

These approximations in position estimation introduce 

some errors, but allow us to generate good hypotheses that 

will be refined in the subsequent particle filtering stage.  

 

To describe shape we use geometric moments, which 

hold point distribution information. Invariance to position 

and scale can easily be accomplished by using relative 

positions to the region's centroid and normalization to the 

area: 
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where upq is a normalized moment of order p+q and M00 

the area of the region. 

Normalized moments should be used as shape 

descriptors using orders of 2 onwards. Despite this fact, 

the maximum order used should always be the 4th or 

higher. This is because for some symmetric shapes, such 

as squares for example, only moments of the 4th order can 

fully distinguish all orientations. 

A normalized distance function between shapes, using 

moments, was then defined assuming a normal 

distribution: 
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ñpq being the observed moment, 
i
npq the moment of the ith 

hypothesis and var(npq) the variance of the trained 

moment of order p+q. The most likely pose estimate of a 

segmented object will then be the one with minimum 

distance to the measured moments. 

2.3. Particle generation 

A likelihood function was defined from d as 

L=exp(-d/2). From this likelihood function, a cumulative 

distribution was computed, from where N particles can be 



generated according to their likelihood by sampling the 

function in a uniform way. 

3. Results 

3.1. Localization error 

The method was tested on perfect segmentations to 

evaluate its localization error alone. These were generated 

by projecting the object in 200 random poses, covering 

untrained orientations. 

 

 

Figure 1. Set of 200 random poses generated to test 

localization error. 

Given the top-down integration context, the error that 

tracking will be subject to is related to the least error 

particle. A quaternion representation was used to compute 

a single error value between the real and estimated 

orientations.  

The average of the absolute angle error was then 

measured for different training resolutions and numbers 

of particles generated (N). Moments of order up to 7 were 

used as shape description features. 

Table 1. Error of best particle, N=100 

Res #Poses X (cm) Y (cm) Z (cm) Angle (º) 

20 3240 0,31 0,25 1,27 18,57 

15 7488 0,29 0,21 0,94 12,6 

10 24624 0,26 0,21 0,84 11,95 

5 191808 0,26 0,22 0,69 10,7 

 

From Table 1 we can confirm how lower orientation 

errors lead to lower error in the depth coordinate Z. Also, 

errors of 1cm in depth and lower than 0.5cm in X and Y 

can be achieved. 

In the proposed method, particles are generated in an 

uniform way along the cumulative distribution function, 

thus leading to unfair generations for low values of N – 

lower than 100 – because not enough samples were 

selected from the set of hypothesis. 

Table 2. Error of best particle, N=900 

Res #Poses X (cm) Y (cm) Z (cm) Angle (º) 

20 3240 0,32 0,25 1,25 16,62 

15 7488 0,26 0,2 0,7 8,19 

10 24624 0,25 0,21 0,59 6,13 

5 191808 0,24 0,2 0,43 4,2 

 

On the other hand, a high number of generated particles 

such as 900 (see Table 2) allows the top-down tracking 

layer to expect starting errors of as low as 5º in orientation. 

From both Tables 1 and 2 we can see how expected errors 

can be as low as the training's resolution. 

This kind of precision in visual attention gives greater 

flexibility in the management of resources for the 

top-down layer – which can make the whole process 

faster and more precise. 

Computational time was also registered (see Table 3) 

on experiments made with a 2.67GHz Intel CPU and 

NVIDIA Quadro FX 580 graphics card. 

Table 3. Computational time 

Res #Poses Time (ms) 

N=100 

Time (ms) 

N=500 

Time (ms) 

N=900 

20 3240 21 31 39 

15 7488 22 41 55 

10 24624 33 42 51 

5 191808 112 131 153 

 

According to our experiments, an almost 30Hz 

real-time performance can be achieved. Also, being the 

proposed process easily parallelized, a real-time 

application would possible even for thin resolution, high 

particle requirements. 

3.2. Pose estimation in real images 

The whole method was tested on real images as well, 

for simple and complex objects, demonstrating the 

credibility of pose estimates with highest likelihood. 

 

 

  

   

Figure 3. Two different objects, a box and “5”, 

their segmentation and highest likelihood pose. 

Objects were learned with a resolution of 15º. 

The method, and likelihood function of the hypothesis 

in particular, behaves well for real images, with either 

simple or complex objects (see Figure 3). Note that in the 

first example no likely hypothesis exists on the number 

“8” since its shape is too different from the object being 

looked for (a box). 

It is also possible to use this method for multiple object 

pose estimation (and, so, recognition). To accomplish that, 

the distance and likelihood measures must be made for all 

the known objects' databases, each pose now being 

basically assigned to an object. This way, generated 

particles will consist not only of pose but object 

identification. Two similar objects, a “5” and a “6”, were 

trained at 15º and tested on a real image – see Figure 4. 



 

 

Figure 4. Result of pose estimation of a single 

object “5” (left) and multiple objects (right). 

3.3. Simple integration with top-down tracker 

Our pose estimation method was integrated with a 

top-down tracker [8] to evaluate the advantages of this 

joint approach to tracking. 

A ball was put on a pendulum movement with an 

obstacle which hides it in the middle of the image. This 

makes the top-down layer lose track of the object every 

time it disappears – and proves how 3D visual attention 

(though only 3D position is used in this case) is important. 

 

Figure 5. Estimate of x coordinate on the tracker 

before and after integration with our bottom-up 

particles. Pendulum movement with obstacle. 

As we can see from Figure 5, when the object's 

movement is unpredictable by the motion model, or 

suffers occlusions, a top-down approach to tracking is not 

reliable on its own. After integration, recovery of the 

object's position is easily achieved after the object enters 

the scene – since bottom-up generated particles with a 

small enough starting error for the tracker to refine. 

To better evaluate the advantage of combining both 

attention approaches we compute the average likelihood 

(Table 4), in the same sequence of images, for both 

top-down's and bottom-up's estimate when used by 

themselves; and also after integration. 

Table 4. Average likelihood of methods 

Top-down Bottom-up Integration 

0,030 0,010 0,078 

 

We can see how tracking improves with integration; 

and also that bottom-up's precision is low compared to 

top-down's when used by itself. Overall improvement in 

performance is obtained, be it in precision or robustness, 

after integration of the tracker with the proposed method. 

4. Conclusions and future work 

A method was introduced and tested, for generating 

pose hypotheses to be used on a 3D tracking paradigm 

that integrates both bottom-up and top-down approaches. 

Such joint approach was proven to take advantage of the 

upper layer's precision and lower layer's initialization 

speed and robustness to movement – obtaining a better 

performance than each of the layers independently. The 

proposed method's speed comes from the choice of shape 

descriptors and decoupling of orientation and position 

estimation problems. 

We can from experiments conclude that the proposed 

method generates credible pose hypotheses with a 

tolerable error (less than 1cm on position and equal to 

resolution on orientation). It is also shown that real-time 

estimation is possible for a reasonable number of 

generated particles, obtaining an average error of 10º in 

orientation. Using graphics libraries such as OpenGL 

allows to generalize the localization method to any 

segmented rigid object – and it is also shown how credible 

pose hypotheses are generated for both complex and 

simple objects. 

Generalizing pose estimation to part-based objects, just 

as in [3], would allow for general, multiple colored or 

textured objects – each part having its own characteristics. 
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