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Robots depend on a world map representation in order to navigate on it. Only a part of the space 

around the agent can be sensed at each time and so measures must be taken in order to reduce the 

uncertainty of this map and likelihood of collision. In this work we propose the use of a 

probabilistic occupancy grid to guide active gaze of the robot on the “walk to target” task. A map 

uncertainty measure is proposed, as is a method for choosing gaze points along the robot’s 

computed trajectory to anticipate the need for trajectory changes.  

Gaze points are chosen from the whole space volume the robot will traverse. Then, robot 

trajectories are computed directly on the probabilistic map in order to drive the robot towards free-

space areas of high confidence. A preliminary evaluation of the approach is done on a real scenario 

using the humanoid robot KOBIAN for the preparatory gaze exploration task necessary for safe 

trajectory planning to a target. 

 

INTRODUCTION  

 

World representation is an important part of perception for the purpose of interacting with the 

agent’s environment. One example of such interactions is navigation, which is a problem tied with 

that of modeling, or mapping, the world around the agent. 

On a typical mapping task the agent navigates through the map, updating the map or its own 

position in the map according to odometry measurements which naturally deteriorate with time. 

Solving this localization problem at the same time as mapping the world is known as the problem 

of Simultaneous Localization and Mapping (SLAM) [1]. Sparse points in the world are defined to 



the agent itself and self-localization is made with respect to these points. A sparse world 

representation is not, though, suitable for motion planning. 

Occupancy grids [2], on the other hand, are metric world representations where the world is 

divided into a grid in which cells have certain physical dimensions and are marked as occupied or 

free (or with a probability of occupation). This kind of representation is adequate for many motion 

planning purposes. Inherent to any of these methods is the assumption that the world is static and 

does not change in time. If one wants to deal with moving obstacles further processing is needed, 

such as segmentation of these objects in the sensor and estimation of their motion model. 

 

Humanoid robots that have been developed usually mimic humans both in terms of body 

kinematics and sensory systems. As a consequence, stereo vision is usually used as a sensor for 

grid mapping. That brings additional challenges to the navigation task: cameras may have a very 

limited field of view (such as 60 degrees) compared to that of a human (almost 180 degrees). For 

this reason robots should, more than humans, actively adopt gazing strategies in order to still 

guarantee a high coverage of space and identify obstacles which sometimes fall out of the robot’s 

field of view.  

However, most implementations of humanoid vision-based navigation forget to actively deal with 

uncertainty of the world representation along the space that will be traversed. Instead, the focus of 

active vision goes mainly to the tasks of localization and exploration. In [3] [4] active gaze was 

used in order to improve localization performance by choosing visual landmarks to fixate and 

track according to the landmarks’ Kalman filter innovation covariance. SLAM’s Kalman filter 

covariances were also the object of minimization in [5] and global trajectories were planned which 

maximize the overall map’s quality. Many works focus also on the exploration problem in order to 

map an entire room or region in the most efficient way [6] [7] [8]. In [9] the localization and 

obstacle avoidance task compete as gaze targets with a decision based on Utility Theory. Obstacle 

positions are known, though, and the competing gaze targets are either minima between trajectory 

and obstacles or landmarks. In [10] a humanoid robot learns in simulation the optimal camera 

movement strategy for the obstacle avoidance and reaching a target task. A neural network that 

takes into consideration only gray-levels of the image to decide on camera motion and walking 

speed is used. 

 

Contribution 

In this work we look into two problems: (1) a representation of the world around a robotic agent 

and (2) actively minimizing the uncertainty of this representation along the robot’s trajectory 

through gaze. This is accomplished through a probabilistic occupancy grid to which a 

measurement of “space occupation” uncertainty is inherently tied. With the proposed systematic 

approach, the robot can effectively plan its motion in an unknown environment, gazing at where it 

is crucial to have a good map: where it plans to walk.  

The contributions of the paper are: 

 A strategy based on active gaze for reducing the map uncertainty of the space volume the 

robot will traverse. This guarantees safety of the executed path. 

 We consider the mapping problem from an egocentric perspective, concentrating on a 

limited region surrounding the agent. This region can be described in high resolution 

which is crucial for obstacle avoidance and deciding gazing actions. 

 Path planning is computed directly on the probabilistic map in order to drive the robot 

towards free-space areas of high confidence. 

 The proposed framework was implemented on the KOBIAN humanoid robot and tested 

on a real scenario. 



PROPOSAL 

 

Map Generation 

We define an egocentric approach to an Occupancy Grid. Our egocentric map of the world is 

defined in a region around the robot, centered and aligned with the current sensor orientation. The 

sensor used for mapping is based on stereo vision using two cameras mounted on the robot. For 

path planning purposes the world representation is made parallel to the walking surface. The map 

frame of reference is then defined as: origin obtained by projecting the head reference frame in our 

walking surface, parallel to this surface, and with the same Yaw orientation as the head. Yaw is 

here defined as the rotation around the vector normal to the walking surface. We refer to this frame 

as the grid reference frame, defined with respect to the robot’s sensor 
G
TS or base 

G
TB. 

An Occupancy Grid algorithm assumes that the exact pose of the robot is known. In this work, we 

do not focus on the localization problem and assume that this pose is given by some sort of sensor 

fusion or SLAM running in parallel with our method.  

 

The occupancy grid problem is defined as computing the posterior probability p(m | z1:t, x1:t). Here 

p represents the probability of occupation, m is the map, z1:t the set of measurements until time t, 

and x the state of the robot (defined to a global reference frame attached to the world). Cells are 

usually considered independent. If so the problem can be split into a binary estimation with static 

state for each cell individually, making it possible the use of a Bayes filter. Probabilities are here 

represented as a log-odds ratio L which is an elegant way of posing the binary inference problem: 
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A Bayes filter at a certain cell i can be defined in the log-odds form [11] according to 
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where O
(i)

 represents the state “occupied” of cell i. In our implementation we assume a prior 

p(O
(i)

)=0.5 (occupied and free cells are equally probable), eliminating the last log of Eq. (2). In the 

log-odds representation probabilities are defined in the ℝ space and hence we opt to limit them to 

the interval [-10,10] which rounds to probability [0.0005,0.9995]. This is in order to avoid L going 

to infinity and taking too long to adapt to environment changes which may occur. A 3D 

implementation of the occupancy grid is used since our objective is to gaze at points in the 3D 

space. This space is divided into NX, NY and NZ number of cells in each axis. 

 

The implemented algorithm follows 5 steps: 

1. Project all 3D points SP from sensor to grid coordinate frame SS
G

G PTP  . 

2. Compute )|( )(
G

r POp  of all cells r on the ray from PG to sensor position. 

3. For each cell i compute )|(max)|( )()(
G

i
t

i POpzOp   of all PG that projected on that cell 

4. Compute 
)(

1
i

t
L


 from rotation/translation according to the sensor motion with respect to the world 

)1(
)(

tS
tS T , where S(t) is the Sensor’s reference frame at time t. 

5. Update occupancy probabilities through Eq. (2) 

 



The term )|( )(
G

r POp  should be set according to the inverse sensor model. Since this is not the 

focus of the present paper, we follow [8]’s strategy using “occupied” and “free” confidence priors 

representing how much the measurements are trusted for each of the states. As in [8], we set 

)|( )(
G

r POp  of the cell where PG projects to Poccupied=0.7 and cells until the sensor to Pfree=0.4. 

 

Trajectory planning 

The generated grid can be projected into a 2D top-view map where each cell’s value corresponds 

to the maximum probability of occupation along the vertical axis. A trajectory to the target can 

then be computed such as to minimize the occupancy probability along this path. 

In this work we opted for an A* approach [12] to the search problem. We chose this method for its 

simplicity, although other more efficient approaches could be used. We use a set of predefined 

robot motions to build the search graph, adjusted to the motion capabilities and limitations of our 

robot such as maximum turning angle. The path was planned in (angle, length) space due to details 

in the interaction with the robotic platform. The graph is searched such that only nodes with 

occupancy probability lower than Pwalkable are explored, and the cost associated to a certain motion 

is set as to grow exponentially with occupancy probability of the cells it traverses. The Euler 

distance was used as a heuristic for the cost to the goal. The result is exemplified in Fig. 2. 

 

 
Figure 2.  Two examples of simulated scenarios with regions of different occupancy probability. 

The brighter the pixel the higher the probability. Trajectory nodes explored (closed list 

of the A* algorithm) are in cyan and final solution in red. With this approach we look 

for minimum cost trajectories preferring regions with low occupation probability. 

 

For planning purposes it is usually useful to consider the robot as a point in the grid and obstacles 

are dilated according to the robot’s dimensions. Here we keep the grid probabilistic, without 

classifying cells into occupied or free. Therefore the grid can be dilated by taking for each grid cell 

the maximum of occupancy probability in the robot’s area around that cell. 

 

Map uncertainty along trajectory 

Cells in our map are represented as binary random variables and uncertainty of these variables can 

be measured using its Shannon Entropy value for a binary variable: 

),,(log),,(),,(log),,(),,( ZYXQZYXQZYXPZYXPZYXh   

where P(X,Y,Z) is the probability of occupation of that cell and Q(X,Y,Z)=1–P(X,Y,Z). For each 

(X,Y) on the grid we compute the total entropy 
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As the map is being built, cells can be queried for uncertainty, and high uncertainty points can be 

chosen as gaze targets in order to reduce map uncertainty and thus collision chances. An example 

of the map is shown in Figure 3. We assume general 2D trajectories with some velocity profile and 

look for uncertainty maxima along time windows of the trajectory (Fig. 4). By looking for these 

maxima in time instead of space, we take into account the robot’s velocity. Thus, we solve 
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with H(c(t)) being the total entropy at point c(t) in the trajectory parameterized in time. c(t*(w)) 

are the chosen gaze points defined on the 2D grid map along the w
th

 window of trajectory, and d is 

the window duration. 

 

 
Figure 3.  Left: 2D top-view of the Occupation Grid. Black is occupancy P=0 and white P=1; 

trajectory chosen offline and represented in blue; big green square is the target; small is 

the sensor; and squares along the trajectory represent uncertainty maxima. Right: 2D 

representation of map uncertainty H(X,Y), white is max. uncertainty, black is minimum. 

 

 
Figure 4.  Average uncertainty at each point along the trajectory with respect to time. Boxes 

represent windows for search of maxima and red dots represent those maxima. 

Trajectory windows start at 3s to avoid regions too close to the robot. 

 

Results in Fig. 4 show that function H(c(t)) is predictably higher as points get close to the sensor’s 

cone origin, since points on the vertical direction are less and less sensed. 

 

 

 



Where to gaze 

To decide which of the generated points to gaze at, we select the first one with uncertainty higher 

than a threshold THuncertain, thus giving priority to closer points as argued previously. The least 

priority point (i.e. the one gazed at after the robot is certain about its trajectory) is the target. 

 

The chosen gaze point in the 2D uncertainty map is then mapped back to the 3D world. The choice 

of the gaze point’s height is made by computing a center of maximum uncertainty. One option 

would be to take the maximum uncertainty argmax(hX,Y(Z)). However, for hX,Y(Z)=a (constant), 

this would be equal to one of the limits of the function. Choosing the “center of mass” of hX,Y(Z) 

could lead to gaze points staying forever in the middle of two maxima on the function limits. We 

suggest a combined approach by segmenting hX,Y(Z) into connected regions (Fig. 5) and gazing at 

the center of mass of the region with highest total uncertainty. 

 

 
Figure 5.  Uncertainty along the vertical axis during one experiment with the robot. Maximum 

uncertainty points are marked with a triangle (gaze to borders); center of mass of the 

uncertainty with a star (gaze to a low uncertainty region); and our choice with a square. 

 

Tracking of the gaze target is done using only neck joints. The same method can equally be used 

with eye saccades although one must have in mind, of course, the effects on image rectification for 

stereo vision in that case, which will render a narrower field of view to the system. 

 

RESULTS 

 

Robotic platform and experimental setup 

This research was implemented on the biped humanoid robot platform KOBIAN [13]. KOBIAN 

was built with human robot interaction in mind, it is 1.4m tall, weighs 62kg and has a total 48 

DoF. The vision system uses two CMOS cameras working at a 30Hz acquisition rate. 

Camera images were used at a 320x240 pixel resolution and a standard Block-Matching algorithm 

implementation present in OpenCV [14] was used to generate disparity images. 

 

 
Figure 6.  The humanoid robot KOBIAN used for this work (a), its kinematic structure (b). 

 

 

 



Since the Grid Occupancy algorithm is of complexity O(NX*NY*NZ), the choice of these values 

can change performance drastically. In these experiments they were set according to the physical 

dimensions of the robot. Having in mind the average step size of the robot, 0.20 meters, we 

decided on the dimensions [0.15x0.15x0.30] meters for the cell size and (NX,NY,NZ)=(61,61,5). 

We assume 2D trajectory planning of the robot and hence, for performance reasons, decided to 

lower the resolution along Z comparing to the other axes. 

 

The tested scenario is as follows: the robot stands in a room looking forward, having a target 

where it has to walk to, fixed in the world (3m ahead, 2m to the left). Between the robot and the 

target, some common obstacles such as chairs were placed. For simplified collision detection, 

occupied cells were dilated taking into account the robot’s dimensions (approximately a 60x60cm 

square on the 2D plane) – so that the robot can be represented as a single cell in the map. The 

generated trajectories have a constant velocity of 1cell/sec (roughly equivalent to 1 step per second 

on the KOBIAN robot). Gaze targets will be searched along this path. 

 

Experiment results 

The proposed algorithm is started once the robot is on the floor, successfully generating gaze 

targets along the trajectory (Fig. 7). Chosen gaze targets were at first along uncertain regions close 

to the robot (uncertain due to the cone shape of the stereo sensor, as discussed in the previous 

section) and then towards the walking goal. All was generated online and automatically without 

human intervention. The duration of the experiment was approximately 1 minute.  

 

 
Figure 7.  Results of the proposed gazing strategy. From top to bottom: 1) Right camera image; 2) 

Occupancy map (projected to 2D and dilated to robot dimensions). Egocentric 

representation: vertical direction in the image corresponds to current sensor direction. 

The thin blue line indicates the orientation of the robot base with respect to the sensor 

(imagine a line piercing the robot’s waist from the left to the right). Black is probability 

of occupation P=0 and white P=1, generated trajectory blue, and gaze target cyan point; 

3) Resulting uncertainty of the map. White means max. uncertainty, black min. 

uncertainty. From left to right: frames 112, 208, 310, 417, 523. 

 

     

 



At first, an obstacle is detected that leads to a trajectory around its left. After gazing at this 

trajectory’s high uncertainty regions, a new obstacle is found and the trajectory updated. Due to 

the narrow field of view of the stereo sensor, regions close to the floor are not sensed in the 

beginning (the robot looks straight ahead). The generated gaze targets are as such lower than the 

starting one. 

 

We then compare the result, in the exact same scenario, of adopting a “gaze at target” approach to 

mapping and planning. We conducted an experiment where the robot starts in the same condition 

as in the previous one but then looks straight to the target without any previous gazing points. The 

result (Fig. 8) is that some obstacles that were sensed with active gazing are not sensed anymore 

because: they are either 1) too low (in height) with respect to the walk target. This is a typical 

situation for human-sized humanoids. Or 2) they extend to an area not only restricted to the 

straight line robot-target. In this case the trajectory would actually lead to a collision. 

 

 
Figure 8.  Results of “gaze at target” strategy. From top to bottom: 1) Right camera image; 2) 

Map occupancy 3) Map uncertainty.  From left to right: frames 101, 207, 316 – after 

this point the map does not change anymore. 

 

On a final experiment we quantitatively compare the results of our active gaze strategy with a 

“random-gaze” strategy. Gaze orientations were defined in pan/tilt space taking into consideration 

robot joint limits and sampled randomly in that space at the same frequency as our active strategy. 

To show the advantages of the proposed method, we took the best-case of the random approach 

where it “accidentally” looks to free space where a trajectory can be executed. The scenario is 

similar to the one presented on the previous experiments and results are shown in Fig. 9. 

    

   

    

 



 
Figure 9.  Average entropy of cells along planned path as a measure of path “safety”. Two 

strategies are compared: random gaze and proposed active gaze system. Time t in 

algorithm iterations. Gazing executed every 4 iterations. First gaze at t=3. 

 

In both experiments the robot starts in the same configuration and so the same path is planned and 

same average entropy achieved until the first gaze command is executed (t=3). At this point, as we 

can see from Fig. 9, even on a lucky gaze target for the random gaze strategy, uncertainty is 

lowered considerably slower when compared to the proposed approach. At t=7 our approach has 

already achieved uncertainty 0.15 while random is still 0.35. 

 

CONCLUSIONS 

 

We proposed and tested on a humanoid robot, KOBIAN, an active gazing strategy based on 

uncertainty maps. Although active gaze has been proposed before to maximize localization 

information, this goal could conflict with that of navigation in an unexpected obstacle-enhanced 

environment. In the system we propose, gaze target is updated every few iterations to a new one 

along the planned walking trajectory – which lowers uncertainty along the trajectory and thus 

collision probability. The proposed system was tested on a real scenario, recognizing obstacles 

after gazing actions were taken, and updating the map along the walking trajectory. We believe the 

proposed uncertainty representation is extremely useful for navigation purposes and practical due 

to its simplicity and lack of processing requirements in case a grid-like representation is chosen as 

the world mapping method. 

 

ACKNOWLEDGEMENTS 

 

This study was conducted as part of the Research Institute for Science and Engineering, Waseda 

University, and as part of the humanoid project at the Humanoid Robotics Institute, Waseda 

University. It was also supported in part by RoboSoM project from the European FP7 program 

(Grant agreement No. 248366), MEXT/JSPS KAKENHI (Grant Number: 24360099), Global COE 

Program “Global Robot Academia”, MEXT, Japan, SolidWorks Japan K.K., and DYDEN 

Corporation whom we thank for their financial and technical support. 

  

REFERENCES 

 

[1] Smith, R. C. and Cheeseman, P., "On the representation and estimation of spatial uncertainty", 

The international journal of Robotics Research, Sage Publications, 5, 56-68, 1986.  



[2] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,” Computer, vol. 

22, no. 6, pp. 46–57, 1989. 

[3] D W Murray and A J Davison, “Mobile Robot Localization using Active Vision”, Proc 5th 

European Conference on Computer Vision, II, pp 809-825, 1998. 

[4] Lidoris, G. et al, "Information-based gaze direction planning algorithm for SLAM", 6th IEEE-

RAS International Conference on Humanoid Robots, 302-307, 2006.  

[5] Sim, R., Roy, N., "Global A-Optimal Robot Exploration in SLAM," Proceedings of the IEEE 

International Conference on Robotics and Automation, 2005, pp. 661-666, April 2005. 

[6] Strand, M. and Dillmann, R., "Using an attributed 2D-grid for next-best-view planning on 3D 

environment data for an autonomous robot", International Conference on Information and 

Automation 2008, 314-319, 2008. 

[7] Yamauchi, B., "A frontier-based approach for autonomous exploration", 1997 IEEE 

International Symposium on Computational Intelligence in Robotics and Automation, 146-

151, 1997. 

[8] R. Shade and P. Newman, “Choosing where to go: Complete 3d exploration with stereo,” in 

Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp. 

2806–2811. 

[9] Seara, J. F. and Schmidt, G. (2004). Intelligent gaze control for vision-guided humanoid 

walking: methodological aspects. Robotics and Autonomous Systems, 48(4), 231-248 

[10] Suzuki, M., Gritti, T. and Floreano, D., "Active vision for goal-oriented humanoid robot 

walking", Creating Brain-Like Intelligence, Springer, 303-313, 2009.  

[11] S. Thrun, W. Burgard, and D. Fox., “Probabilistic Robotics”, Intelligent Robotics and 

Autonomous Agents series, Intelligent robotics and autonomous agents, The MIT Press, 

August 2005. 

[12] Hart, P. E., Nilsson, N. J., Raphael, B. , "A Formal Basis for the Heuristic Determination of 

Minimum Cost Paths", IEEE Transactions on Systems Science and Cybernetics , vol.4, no.2, 

pp.100-107, July 1968. 

[13] N. Endo, S. Momoki, M. Zecca, M. Saito, Y. Mizoguchi, K. Itoh, and A. Takanishi, 

“Development of whole-body emotion expression humanoid robot,” in Proc. IEEE Int. Conf. 

Robotics and Automation ICRA, 2008, pp. 2140–2145. 

[14] Bradski, G. (2000). The OpenCV Library. Dr Dobbs Journal of Software Tools, 25(11), 120-

126. 

 


