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On stereo confidence measures for global
methods: evaluation, new model and

integration into occupancy grids
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Abstract—Stereo confidence measures are important functions for global reconstruction methods and some applications of
stereo. In this article we evaluate and compare several models of confidence which are defined at the whole disparity range.
We propose a new stereo confidence measure to which we call the Histogram Sensor Model (HSM), and show how it is one
of the best performing functions overall. We also introduce, for parametric models, a systematic method for estimating their
parameters which is shown to lead to better performance when compared to parameters as computed in previous literature. All
models were evaluated when applied to two different cost functions at different window sizes and model parameters. Contrary
to previous stereo confidence measure benchmark literature, we evaluate the models with criteria important not only to winner-
take-all stereo, but also to global applications. To this end, we evaluate the models on a real-world application using a recent
formulation of 3D reconstruction through occupancy grids which integrates stereo confidence at all disparities. We obtain and
discuss our results on both indoors’ and outdoors’ publicly available datasets.

Index Terms—Stereo vision, stereo matching, confidence, uncertainty, 3D reconstruction, occupancy grids
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1 INTRODUCTION

MODELING stereo matching’s uncertainty is of
high interest to stereo vision applications. How

much confidence is to be given to a certain stereo
match should be established by the right functions
so that global [1], [2], [3], fusion [4], [5], [6] and
progressive methods [7] are reliable. Traditionally,
pixel matching costs have been used for this purpose,
but it has been shown that these do not model un-
certainty correctly [8]. Confidence measures of stereo
are functions of stereo cost that attempt to better
model match uncertainty and consequently increase
performance of stereo methods. Some comparisons
have been published on stereo confidence measures
[8], [9] for use with winner-take-all (WTA) strate-
gies, where only the highest-confidence estimates are
considered and evaluated. However, evaluation of
functions providing a confidence measure to each
disparity of the disparity range is of high interest to
global methods and certain global 3D reconstruction
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frameworks which fuse stereo information over time
[4], [6]. Furthermore, performance of these functions
will change depending on the choice of parameters
and care should be taken to correctly estimate these
before evaluation. Evaluation and proposal of con-
fidence measures and their parameters, in terms of
impact to performance of global methods, will be the
focus of this article. Evaluation will be made not only
on a WTA stereo paradigm, but also on the recently
proposed ”Cost-Curve Occupancy Grid” method [6]
which fuses stereo measurements over time using the
whole disparity range.

The contributions of this article are 1) A comparison
of a set of models that provide a confidence measure
for stereo at the whole disparity range in indoors and
outdoors datasets, and an analysis of the influence of
model parameters when they exist; 2) An automatic
method to compute model parameters from a stereo
pair without ground-truth data, based on maximum
likelihood; 3) A new model, the Histogram Sensor
Model (HSM), which we show to be one of the
best performing; 4) A comparison of the confidence
models on a real-world application - mapping of an
outdoors scenario for autonomous driving. For this
purpose we use an existing global occupancy grid
method that integrates confidence measures at all
disparities along time. Relation between results of
contribution 1 and occupancy grid performance is
discussed.

The structure of the article is as follows. We intro-
duce, under a common notation, three existing and
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one new stereo confidence measures in Section 2. We
then propose a method for parameter estimation of
the parametric models in Section 3. We go on to
briefly introduce the occupancy grid method (Section
4) and analyze the performance of the models and
parameter choices in Sections 5 and 6. Conclusions
are summarized in Section 7.

1.1 Background

Traditionally, uncertainty of stereo matches has been
modeled by cost-functions of pixel neighborhoods,
or windows. The cost function computes the cost
of matching a pair of pixels between images and
assumptions regard to noise distributions, continuity
and local smoothness. Common cost functions include
Sum of Squared Differences (SSD), Sum of Absolute
Differences (SAD) and different variants of Correla-
tion. Other more elaborate cost functions have been
proposed, some of which can be implemented as a
filter to the images followed by one of the previously
mentioned costs [10]. For a thorough comparison of
cost functions refer to [10].

Based on these cost functions several models of
stereo uncertainty, or confidence measures, have been
proposed since the late 1980s. Some of them assume a
winner-take-all approach, refining a disparity estimate
around the least cost disparity, others take all costs
into consideration. Models targeting WTA stereo are
usually only defined at the highest-confidence (i.e.
lowest-cost) match and do not provide confidence
measures on the rest of the disparity range. Examples
include left-right consistency checks, uniqueness or
curvature tests (how much the highest-confidence is
higher than others), texture thresholds, among others.
Some of these WTA confidence measures were re-
cently reviewed in [8], [9]. Other confidence measures
include statistical models that compute a variance
of the disparity estimate. Some models do so by
polynomial fitting [11], others by modeling disparity
and texture fluctuation inside windows [12], or even
by directly computing the variance of WTA disparity
between different window sizes [13].

Global methods, however, usually require a like-
lihood function over disparity to be propagated in
order to obtain a final 3D reconstruction. This asks for
confidence measures that are defined along the whole
disparity range and that model the confidence on each
stereo match hypothesis in a reliable way. Specifically,
it is not only important that the highest-confidence
disparity is of high accuracy but also that when this
estimate is wrong, a high confidence is still attributed
to the true disparity. Figure 1 shows an example of
a good confidence function, or confidence measure,
in these terms. A few stereo confidence measures
have been proposed that are defined at all disparities
within the disparity range, although they are only
evaluated at WTA disparity in recent benchmarks [8].
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Fig. 1. Top: Matching a pixel in one image to pixels at
different disparities in another image. Middle: Cost for
each disparity. Bottom: Confidence measure computed
from the cost values. Dashed line indicates true dispar-
ity. Even if the minimum cost is wrong, true disparity
should still be attributed some confidence.

For example, in [14], Matthies and Okutomi assume
normally distributed image noise and model the prob-
ability of the measured pixel differences inside a win-
dow according to that model. Sun et. al use a pixel-
wise likelihood function [1] in a global stereo method,
propagating these likelihoods to neighboring pixels
in a Markov Random Field formulation of stereo.
The cost function used was the pixel dissimilarity
function proposed by Birchfield and Tomasi in [15],
chosen for its invariance to image sampling. Also,
Mordohai recently proposed the SAMM measure [16]
which computes a confidence for each disparity based
on the correlation between the left-right stereo cost
curve and the self-matching (i.e. left-left) cost curve.
No explicit probability distribution assumptions are
made. Although promising, the function scores poorly
for large support windows when used with SAD costs
[16]. Merrell et. al [5] assumes costs to be normally
distributed with mean equal to the best cost value
and is also evaluated in [8].

Researchers have recently benchmarked several of
these stereo confidence measures [8], [9], [17], [18].
Such benchmarks typically compare different meth-
ods for detection of correspondence errors [9], [17];
or evaluate whether stereo confidence measures can
accurately rank matches on a WTA scenario [8], [9].
The latter make use of Receiver Operating Character-
istic (ROC) curves for the evaluation, which have been
frequently used in the stereo community [16], [19].
ROC curves are obtained by plotting the error-rate of
a WTA strategy from the highest confidence matches,
for different confidence thresholds. Using ROCs as
the comparison criterion, a notable contribution to
the state of the art of stereo confidence measures
was made by Hu et. al [8]. In that article the au-
thors analyze 17 different confidence functions both in
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terms of detection of correct WTA matches, occlusions
and performance on discontinuities. Nevertheless, the
influence of parameter choice on the performance of
parametric functions was not discussed. We studied
this problem and present our results in this article as
well, concluding that indeed parameter choice drasti-
cally influences performance both in WTA stereo and
global methods. Finally, these recent benchmarks were
conducted mostly for confidence measures defined
only at WTA disparity. Even when measures were
well defined across the whole disparity range, eval-
uation was only made on WTA disparity. Such evalu-
ations are hence useful for WTA methods but less so
for global methods which integrate the information
at all disparities, such as those targeted in this article.
They leave out possible global and semi-global stereo
approaches using multiple disparity hypotheses [1],
[2], [3], [6], [19], [20].

Although WTA approaches to stereo are frequently
preferred due to their higher computational speed,
they are more susceptible to problems with occlu-
sions, discontinuities, noise and lack of texture. Such
problems can be avoided by discarding matches that
could have happened by chance (a contrario models
[21]), or that are ambiguous given the confidence mea-
sure (e.g. confidently stable matching [22], training of
confidence thresholds from ground-truth [23]). How-
ever, these methods come at the cost of lower density.
Global methods, by considering the whole disparity
range and certain geometry assumptions, have the
potential to better overcome such problems. Popular
examples of these methods include dynamic pro-
gramming [19], optimization methods using Markov
network representations of stereo matching [1], [2],
[3], among others.

Furthermore, we recently showed that occupancy
grid algorithms using stereo sensors can also improve
performance by integrating confidence measures at
all disparities instead of WTA disparity alone [24],
[6]. This integration of several stereo pairs into a
final occupancy grid was the chosen application in
the present article for confidence measure evaluation.
Such is a typical scenario found in real-world robotics
applications and autonomous driving applications,
which are usually approached using grid-based meth-
ods [4], [6], [25], [23]. Inclusively, recent work has
provided the community with urban driving datasets
including stereo and laser rangefinder data which
can be used as ground-truth [26]. The existence of
such datasets also asks for an evaluation of stereo
confidence functions and their global integration in
time in such challenging scenarios.

2 STEREO CONFIDENCE MEASURES

We consider two images I1(x, y) and I2(x, y) coming
from the same underlying image I(x, y), displaced

along the x axis with added Gaussian noise. Therefore,

I2(x, y)− I1(x+ d(x, y), y) = N (0, σ2
i ) (1)

where N (0, σ2
i ) represents Gaussian white noise with

variance equal to the sum of noise variances of each
image σ2

i = σ2
1 + σ2

2 . Here d(x, y) ∈ {0, 1, ..., D − 1}
represents the disparity at each pixel. We define also
a window with M×N pixels where (x, y) is the anchor
pixel in the center of the window.

Different confidence measures model stereo
matches differently. For example, one can model the
probability of a disparity value d(x, y) conditioned
on a cost function of the pixels inside a window, but
another option is to condition disparity on the whole
set of pixel differences inside that window. We then
define for each pixel (x, y) a matrix of measurements
E ∈ RS×D, where the D columns are disparity
hypotheses and the rows are measurements used for
the stereo confidence model (e.g. S = 1 for a single
cost value per disparity, or S =MN pixel differences
per disparity). We will use the notation E:,d to
represent all rows taken at disparity d. We will also
refer to the disparity with minimum cost by dmincost.
Finally, in this work we assume independence of
measurements at different disparities such that

p(E) =
∏
d

p(E:,d). (2)

In this article we will deal with a special class of
stereo confidence measures defined along the whole
disparity range such that

C(d) =
p(E:,d | d)∑

d′
p(E:,d′ | d′)

(3)

is the confidence of assigning disparity d to a cer-
tain pixel, and p(E:,d | d) is the probability density of
measurements assuming d is the true disparity. Such
formulation is used implicitly in other benchmarks [8]
and will also be convenient for the integration into
probabilistic frameworks described in Section 4.

We will evaluate and compare different confidence
measures with two different stereo cost functions:
• Sum of Squared Differences (SSD)
• Sum of Absolute Differences (SAD) using Birch-

field and Tomasi’s pixel dissimilarity function
[15], which we will call BTSAD.

These are widely used cost functions, adopted by
recent computer vision libraries [27] for local and
global stereo methods. The implementations used in
this work were those found in OpenCV [27], which
also apply a 9x9 Sobel filter as a prefilter to the images.
Sobel prefiltering is a common procedure seen in other
stereo methods as well (e.g. [28]).

2.1 Matthies’ model
Matthies and Okutomi [14] propose a probabilistic
model of stereo that assumes pixel differences inside
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a window to be i.i.d. and zero-mean Gaussian dis-
tributed. The joint probability of all pixel differences
is given by

p(E:,d | d)
i.i.d.
=
∏
s

p(Es,d | d) ∝ exp

(
− 1

2σ2
Mat

∑
s

E2
s,d

)
,

(4)
where E ∈ RS×D with S = MN . Each element
Es,d holds one of the MN pixel differences inside a
window at disparity d. Note that the joint distribution
is related to a SSD (

∑
sE

2
s,d). Similarly to recent

literature [8], we normalize the SSD by the number
of window pixels1 by setting σ2

Mat =MNσ2
i .

To obtain a similar model for a SAD cost function
we can assume the i.i.d. pixel differences to follow a
zero-mean Laplace distribution. The joint distribution
is then given by

p(E:,d | d)
i.i.d.
=
∏
s

p(Es,d | d) ∝ exp

(
− 1

bMat

∑
s

|Es,d|

)
.

(5)
In this case the joint distribution is related to a SAD
(
∑
s |Es,d|). Likewise the SSD case and since it lead us

to better performance, we set bMat =MNbi where bi
is the parameter of the zero-mean Laplacian of single
pixel differences.

2.2 Merrell’s model
Merrel et. al [5] assume costs themselves to be nor-
mally distributed. The mean is set to the minimum
cost of the corresponding pixel and variance is a
parameter σ2

Mer. Confidence is in this case defined by

p(E1,d | d) ∝ exp

(
− (E1,d − E1,d mincost)

2

2σ2
Mer

)
, (6)

where E ∈ R1×D and each element E1,d is a window
cost value, e.g. E1,d = SSD or BTSAD.

2.3 The exponential distribution
The exponential model [1], [2], [3] assumes costs to be
exponentially distributed and is given by

p(E1,d | d) ∝ exp

(
−E1,d

µ

)
, (7)

where E ∈ R1×D and each element E1,d is a window
cost value, e.g. E1,d = SSD or BTSAD. Note that this
model’s expression is similar to Matthies’. However,
while the exponential model is a pdf of the cost
values, Matthies’ is a joint pdf of all window pixel
differences.

Note also that in other literature µ is often omitted
from the equations, thus µ = 1 is often assumed. The
underlying problem of that assumption is that, for

1. Note that the original model [14] sets σ2
Mat = σ2

i . While the
normalization by MN was not used in that publication, we still
refer to the model as used in this article as ”Matthies’ model” for
acknowledgment.
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Fig. 2. Distribution of costs at true disparity (E1,d∗ ) for
SSD (left) and BTSAD (right) cost functions on a 5x5,
9x9 and 13x13 window. Horizontal axis represents the
values of E1,d∗ .

µ << E1,d equation (7) will approximate min(E1,d)
and thus p(E1,d mincost | dmincost) = 1 will hold for all
dmincost. Such choice of parameter could hence lead
to low performance of the confidence measure.

2.4 New confidence measure: Histogram Sensor
Model (HSM)
We finally propose our new confidence measure - the
HSM - which consists of a histogram trained with
costs at true disparity. Confidence is modeled from
the cost values and as such E ∈ R1×D. In Figure 2, we
show these histograms for SSD and BTSAD costs with
different window sizes, taken from true disparity d of
all images in the 2003 and 2006 Middlebury datasets.
We populated the histograms with costs measured at
all un-occluded pixels of all images, while true dis-
parity was retrieved from the ground-truth disparity
maps provided by the datasets. The dimension of bins
was chosen at 3.5σh/N1/3 according to Scott’s normal
reference rule [29], where σh represents the standard
deviation of the costs and N the number of samples.

Stereo confidence is in this case defined as

p(E1,d | d) ∝ hist(E1,d), (8)

where E1,d is a window cost value, e.g. E1,d = SSD or
BTSAD, and hist(E1,d) refers to the frequency of the
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histogram bin associated with E1,d.

3 PARAMETER ESTIMATION

The parametric confidence measures introduced so far
depend on the estimation of a probability distribu-
tion’s parameter (σ2

Mat, σ
2
Mer, µ). In this section we

propose to estimate the parameters in a systematic
way without ground-truth data, from each stereo pair
being matched: through maximum likelihood (ML)
estimation of the distribution’s parameters computed
directly from cost values. The method does not require
ground-truth data but assumes cost functions provide
relatively low error-rates (low number of bad pixels).
To achieve this, in our study we compute ML parameters
from costs at all image pixels where left-right disparity
consistency is verified.

In a nutshell, we: 1) Compute cost values at all pix-
els and disparities; 2) Compute dmincost and perform
a left-right disparity consistency check; 3) For all (x,y)
with consistent disparities we compute the mean and
variance of the costs at dmincost; 4) Compute model
parameters from those means or variances.

3.1 Matthies’ model
Matthies’ model for the SSD cost function assumes
pixel differences to be zero-mean Gaussian. The Gaus-
sian’s parameter σ2

i can be computed by maximum
likelihood from the variance of the data. For conve-
nience we estimate this variance from the SSD cost
values instead of the individual pixel differences. We
do this by the following heuristic2, which we found
best performing:

σ̂2
i =

√
V arx,y(SSD(x, y, dmincost(x, y)))

MN
√
2

. (9)

As mentioned in Section 2.1 we set σ̂2
Mat = MNσ̂2

i ,
which is effectively eliminating the MN normaliza-
tion in (9).

On a SAD (or BTSAD) cost function, we assume
pixel differences are zero-mean Laplace-distributed,
for which the maximum likelihood parameter is the
mean of the absolute value of the data. As done in
the SSD case, we compute this estimate from the cost
values themselves:

b̂i =
Meanx,y(BTSAD(x, y, dmincost(x, y))))

MN
, (10)

and we set b̂Mat =MNb̂i. Please note that using this
normalization makes b̂Mat equal to the costs’ mean,

2. Note that from the moments of the normal distribution we
know that a variable X2 has variance 2σ4 for X = N (0, σ2). We
compute the variance of an SSD by V ar(

∑MN
s=1 E

2
s ) = 2σ4

iMN(1+
ρ(MN − 1)), where ρ is the average correlation between the
squared pixel differences E2

s . Our heuristic assumes ρ = 1. While
the original i.i.d. assumption of the model [14] would lead to
ρ = 0, assuming ρ = 1 lead us to better performance results.
Finally, note that another option for estimating σ2

i would be
σ2
i =Mean(

∑MN
s=1 E

2
s )/(2MN), which would make the estimated

model’s expression equal to that of the exponential.

leading to the same model expression and parameter
as the exponential model (see (7) (12)). In this article,
results obtained by maximum likelihood will then
be the same for BTSAD Matthies’ and the BTSAD
exponential models.

3.2 Merrell’s model
Merrell’s model is a Gaussian distribution of costs
with mean E1,d mincost. The maximum likelihood pa-
rameter is estimated from the variance of the data,

σ̂2
Mer = V arx,y(E1,d mincost(x, y)), (11)

where E1,d mincost is an SSD or BTSAD.

3.3 The exponential distribution
Given an exponential distribution of costs, the maxi-
mum likelihood estimate of the distribution’s param-
eter µ is given by

µ̂ =Meanx,y(E1,d mincost(x, y)), (12)

where E1,d mincost is an SSD or BTSAD.

4 INTEGRATING STEREO INTO OCCUPANCY
GRIDS USING CONFIDENCE MEASURES

Consider a grid of cells which can be in one of two
states: occupied O or free O. The objective of an
occupancy grid algorithm is to compute or update
the probabilities p(Oi|z0...t, x0...t) for each cell i ∈
1, 2, ..., C, at each time instant t, given measurements
z0...t and sensor locations x0...t until time t. This is
implemented as a Bayes filter at each cell, which
updates occupancy probabilities every time a new
measurement is taken [30].

In this article we use a Cost-Curve Occupancy Grid
[6] to compute occupancy at each cell from stereo
cost measurements at the whole disparity range. The
method computes occupancy of cell i as

P (Oi|E) = P (Oi|Vi, E)P (Vi|E)+

P (Oi|V i, E)(1− P (Vi|E)),
(13)

where the event Vi = Oi−1, ..., O2, O1 represents
visibility of cell i. For the sake of readability and
compactness, the equations shown here are for a one-
dimensional grid aligned with the sensor - corre-
spondent to the intersection of a camera ray with
the three-dimensional grid. Also, the order of cells
is reversed from that of pixel disparity: for example
i = 1 is the closest cell to the camera, equivalent to
d = D − i = D − 1.

In the original paper [6], which the interested reader
should refer to, it is demonstrated that

P (Vi|E) =
∏

j=1...i−1
P (Oj |Vj , E), (14)

P (Oi|Vi, E) =
p(E|Oi, Vi)P (Oi, Vi)

P (Vi|E)p(E)
, (15)
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P (Vi|E)p(E) =
∑

j=i...C

p(E|Oj , Vj)P (Oj , Vj), (16)

P (Oi|Vi, E) =
p(E:,D−i|Oi, Vi)∑

j=i...C

p(E:,D−j |Oj , Vj)
. (17)

Note that (17) is similar to our definition of stereo
match confidence (3) if disparity is seen as a position
(i.e. cell) which is both occupied and visible.

As discussed in [6], the method makes the following
assumptions:
• A target surface exists for any 1D grid, or in

other words, there exists at least one occupied
cell. Thus P (VC+1) = 0 and P (VC+1|E) = 0;

• The target is equally probable to be at any of the
cells along the 1D grid. Thus P (Oi, Vi) = 1/C ∀i;

• Measurements E can give no information
about occupancy on invisible cells V i. Thus
P (Oi|V i, E) = P (Oi|V i), which corresponds to a
prior on world geometry. In our work we model
this prior as a constant 0.5 for all i, so that
occupied and free cells are equally probable. Thus
P (Oi|Vi) = 0.5 ∀i;

• Measurements are independent between dispari-
ties (see (2)).

• p(E:,d) is uniform.
• Occupancy or visibility on a cell i gives no infor-

mation on match measurements taken on other
cells. Thus p(E:,D−k|Oi, Vi) = p(E:,D−k) ∀k 6=i;

5 EXPERIMENTAL RESULTS IN STEREO

In this section we make use of stereo datasets and
their ground-truth data to evaluate and compare the
introduced stereo confidence measures. We base our
comparison on two criteria:

1. Performance on a WTA strategy (selecting max-
imum confidence disparity at each pixel). For easy
comparison with other literature, we make use of
ROC curves [19], [16], [8]. These curves are obtained
by plotting the error-rate of a WTA strategy from the
highest confidence matches, for different confidence
thresholds. The area under this curve, AUC, is used
to measure the quality of the function as a confi-
dence measure. Concretely, whether correct matches
are given higher confidence than incorrect ones. Lower
values of AUC mean better performance.

2. We consider the cases where WTA disparity is
different from true disparity by more than one pixel
(we will call these ”bad pixels”). We compute, at
all bad pixels, the sum of the confidence attributed
to a neighborhood around ground-truth disparity d∗

given by the dataset: C(d ∈ GT )badpx =
∑
d∈GT C(d).

Here GT represents the interval [d∗ − 1; d∗ + 1]. A
single performance indicator for each image is then
given by the average of C(d ∈ GT )badpx over all bad
pixels. Higher values of C(d ∈ GT )badpx indicate higher
probability given to true disparity and, as we will argue,
better performance of some global algorithms.

We evaluated all models in two sets of data:
1. Indoors set: 23 stereo pairs (all pairs from Mid-

dlebury 2003 and 2006 [31], [32], [33])
2. Outdoors set: 10 stereo pairs (KITTI stereo dataset

[26], first 10 images).
For each set, the AUC and C(d ∈ GT )badpx results

are averaged from all its stereo pairs and occluded
pixels are excluded. The images were used in gray-
scale. As cost functions we used SSD, and SAD with
BT pixel differences (BTSAD) on window sizes 5x5,
9x9 and 13x13, after prefiltering the images with a
Sobel 9x9 filter (OpenCV implementation [27]). This
prefilter is adopted in several stereo methods (e.g.
[27], [28]) and we also found both AUC and C(d ∈
GT )badpx performance to improve significantly with
prefiltering for all models.

5.1 Parametric models: the influence of parame-
ter choice

For the parametric functions introduced in Section
2, we evaluated the influence of parameter choice
on the two mentioned performance criteria (i.e. AUC
and C(d ∈ GT )badpx). In Figure 3 we show the
performance curves obtained for different window
sizes, cost functions and confidence measures. Results
are shown for four of the indoors stereo pairs. Other
stereo pairs have similar curves, although we do
not display all to keep figures understandable. The
results show that performance of the confidence mea-
sures, with respect to parameter choice, has one clear
maximum followed by a slow exponential decay of
performance. However, a performance ”cliff” exists as
the parameter tends to zero (i.e. is under-estimated).
One important observation is that µ = 1 or µ =
MN , common parameter choices for the exponential
model [8], could easily fall into the ”performance cliff”
by underestimating noise, thus drastically reducing
performance. We believe this to be the reason why
that model scores poorly in recent benchmarks [8] (it
is there called Negative Entropy Measure). Further-
more, we argue that measuring parameter sensitivity
through an analysis such as the one in Figure 3 or
similar, should be used in future benchmarks and
confidence measure proposals for more complete eval-
uations.

Another interesting observation is that these pa-
rameter performance curves have some inter-image
variability. For each combination of cost function and
window size, we computed the standard-deviation of
the optimal parameter values across the 23 images
of the indoors set. The average standard deviation of
parameters was 131% when optimizing AUC and 84%
when optimizing C(d ∈ GT )badpx. On the other hand,
optimal parameters also highly depend on the chosen
cost function: for a fixed image the average standard-
deviation across all combinations of cost function and
window size was 352% in the AUC case and 338%
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Fig. 3. The parametric models’ cliff-maximum-and-tail of performance. Both C(d ∈ GT )badpx (first 2 rows) and
AUC (last 2 rows) are shown for the exponential and Merrell models. Results with the different cost functions
and window sizes are shown. Note how the curves and optimal parameters vary both between images and
cost functions. Figures for Matthies’ model are not shown since they can be obtained by linearly rescaling the
horizontal axis of the exponential model’s figures (see equations (4), (5) and (7)).

in the C(d ∈ GT )badpx case. Even the fact that a
prefilter is applied to the images, in our case the
commonly used Sobel filter [27], [28], leads to an
average displacement of the parameter with optimal
AUC by 60% or optimal C(d ∈ GT )badpx by 167%.
Figure 4 shows such a comparison, taken from the
Cones image in the indoors set. Still, note that the
AUC curves are relatively flat after the performance
cliff and so optimal parameter variabilty does not
pose a problem as long as parameters are not strongly
under or overestimated.

Such performance variability between image con-
ditions and between cost function options has strong
implications for researchers working on stereo. Dur-
ing the design stage of a stereo algorithm, such as
the experimentation with different cost definitions,
prefiltering options and different datasets, the optimal
value of the confidence measure’s parameter should
be recomputed each time. In Hu et. al’s important
contribution to confidence measure benchmarking [8],
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Fig. 4. Performance of models with parameter values
changes with prefiltering conditions. Results obtained
from the Cones image of the indoors set.

the authors compute an optimal parameter value for
each measure on a subset of the images in the dataset:
which requires recomputing all confidences and a per-
formance value (e.g. AUC) for each parameter sample
during an optimization process. The parameters were
there selected such that they lead on average to high
performance within a subset of the dataset images,
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although the procedure is not described in detail.
Besides the fact that averaging solves inter-image
variability sub-optimally, such methodology (of opti-
mal parameter estimation from datasets with ground-
truth) could be a bothersome process when designing
a stereo algorithm and considering a large number of
cost function or prefiltering options. Automatic, fast
estimation of stereo confidence parameters for a given
image and cost function design, for example through
maximum likelihood as done in this article, is then of
high importance.

5.2 Parametric models: parameter estimation
Optimal parameters for the confidence measures can
only be computed when ground-truth disparity is
available. Practically, on unknown stereo pairs, stereo
methods have to either assume certain fixed parame-
ter values (as discussed previously), or automatically
estimate them from each image without ground-truth
data. In this section we evaluate two different param-
eter estimation strategies for the parametric models:
• Fixed parameters, computed using a slow of-

fline optimization procedure on training datasets
where ground-truth is available. Methodology
used was similar to [8]: we estimated parameters
by averaging the optimal parameters across train
set images. For each image in the indoors set
we first computed densely sampled parameter-
performance curves such as the ones shown in
Figure 3, and then averaged the curves’ optima
across all images. We will call these ”average best
performing” (ABP) parameters.

• Per-stereo-pair, maximum likelihood (ML) pa-
rameter estimation as proposed in this article,
which does not require any ground-truth data.
We will call these ”ML” parameters.

Table 1 shows the ABP parameters that we used
in this article, computed from the indoors set. Since
these can be chosen to optimize either AUC or C(d ∈
GT )badpx, we display both in the table. As already
discussed in Section 5.1, ABP parameters optimizing
AUC (column ”minAUC”) have more variability than
those optimizing C(d ∈ GT )badpx (column ”maxC”).
This suggests that a strategy of offline selection of
parameters by averaging on a training set could be
more reliable if the criterion being optimized is C.

We then computed the AUC and C(d ∈ GT )badpx
metrics for each model using ML and ABP param-
eters. Table 2 shows the average and standard de-
viation of the distances between the obtained and
the optimal performance taken from all 23 images of
the indoors set. The table compares two situations:
a typical scenario where ground-truth (GT) is not
available on the image set, and another when it is
available. In the ”No GT” scenario, ABP parameters
are computed from a different set (same images but
without the use of image prefiltering with a Sobel

TABLE 1
Average best performing parameters computed from

the indoors set (total 23 images)
Cost Model minAUC param maxC param

SSD 5x5 Mat 2.95 · 102 ± 151% 5.99 · 102 ± 92%
SSD 9x9 Mat 1.91 · 103 ± 126% 2.36 · 103 ± 47%

SSD 13x13 Mat 4.17 · 103 ± 117% 4.83 · 103 ± 42%
SSD 5x5 Mer 2.59 · 106 ± 197% 3.49 · 106 ± 103%
SSD 9x9 Mer 5.49 · 107 ± 146% 3.92 · 107 ± 65%

SSD 13x13 Mer 2.82 · 108 ± 147% 1.55 · 108 ± 59%
SSD 5x5 Exp 5.94 · 102 ± 150% 1.20 · 103 ± 93%
SSD 9x9 Exp 3.67 · 103 ± 130% 3.15 · 103 ± 98%

SSD 13x13 Exp 8.27 · 103 ± 118% 8.70 · 103 ± 56%
BTSAD 5x5 Mat 1.18 · 101 ± 106% 1.18 · 101 ± 88%
BTSAD 9x9 Mat 5.64 · 101 ± 110% 4.24 · 101 ± 94%

BTSAD 13x13 Mat 1.12 · 102 ± 105% 1.40 · 102 ± 67%
BTSAD 5x5 Mer 1.88 · 103 ± 173% 1.25 · 103 ± 126%
BTSAD 9x9 Mer 3.89 · 104 ± 130% 1.94 · 104 ± 124%

BTSAD 13x13 Mer 1.81 · 105 ± 132% 1.91 · 105 ± 101%
BTSAD 5x5 Exp 2.37 · 101 ± 106% 2.37 · 101 ± 88%
BTSAD 9x9 Exp 1.13 · 102 ± 110% 8.49 · 101 ± 94%

BTSAD 13x13 Exp 2.24 · 102 ± 105% 2.81 · 102 ± 67%

prefilter). It is noticeable how in both situations ML
parameters lead to values of AUC and C(d ∈ GT )badpx
which are similar but slightly closer to the optimal
value than ABP. This was expected from the analysis
in Section 5.1 where we discussed high variability
of optimal parameters, thus again stressing the im-
portance of ML estimation or the use of parameter-
insensitive confidence measures. The table also shows
results obtained with the ML method ran on GT
disparity instead of WTA (see columns ML-GT). It
performed similarly to the no-ground-truth version
and better than ABP on average. Importantly, these
results mean that the tedious process of obtaining
datasets with ground-truth for model training is un-
necessary. Model parameters can be computed using
our proposed ML strategy, without ground-truth data.
Naturally, ABP had slightly higher performance when
trained with GT than in the ”No GT” condition.

To exemplify the better results of ML seen in Table
2, we also compare the shape of C(d) at a given pixel
of Middlebury’s Teddy image which favors the ML
method. In this example, shown in Figure 5, Mer-
rell’s model with ABP parameters behaves in a uni-
modal way (i.e. single maximum), which exemplifies
the effect of the ”performance-cliff”. We remind that
as σ tends to 0, a normalized exp(− x

σ ) becomes an
approximation to min(x), thus leading to a confidence
of 1 on the best match and 0 otherwise. The model
using ML parameters has two maxima: one on WTA
disparity and another on ground-truth.

5.3 All models: evaluation of winner-take-all con-
fidence

We evaluated each models’ performance, including
the HSM’s, in the indoors and outdoors set using the
two parameter selection strategies already discussed.
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TABLE 2
On average, how close to optimal performance do models get? Distances computed as

|AUCMethod(img)−minAUC(img)|/minAUC(img) and |CMethod(img)−maxC(img)|/maxC(img) averaged
over all indoors images. ABP are average best performing parameters trained on the same image set given GT
disparity; ABP-DS are average best performing parameters trained on a different set - same images different

filtering conditions; ML parameters computed for each image given WTA disparity; ML-GT parameters
computed using the same method on ground-truth disparity.

Distance to minAUC Distance to maxC
No GT available GT available No GT available GT available

Model ML ABP-DS ML-GT ABP ML ABP-DS ML-GT ABP
Mat SSD 0.08 ± 0.07 0.12 ± 0.22 0.11 ± 0.09 0.11 ± 0.13 0.11 ± 0.14 0.19 ± 0.15 0.19 ± 0.16 0.11 ± 0.12

Mat BTSAD 0.10 ± 0.22 0.14 ± 0.29 0.08 ± 0.17 0.11 ± 0.14 0.11 ± 0.09 0.14 ± 0.10 0.09 ± 0.08 0.11 ± 0.11
Mer SSD 0.06 ± 0.05 0.12 ± 0.22 0.06 ± 0.06 0.09 ± 0.08 0.04 ± 0.05 0.10 ± 0.09 0.07 ± 0.09 0.07 ± 0.10

Mer BTSAD 0.13 ± 0.27 0.15 ± 0.29 0.09 ± 0.18 0.11 ± 0.10 0.10 ± 0.08 0.13 ± 0.08 0.09 ± 0.08 0.14 ± 0.17
Exp SSD 0.06 ± 0.05 0.12 ± 0.22 0.08 ± 0.06 0.11 ± 0.13 0.12 ± 0.13 0.19 ± 0.15 0.15 ± 0.15 0.11 ± 0.12

Exp BTSAD 0.10 ± 0.22 0.14 ± 0.29 0.08 ± 0.17 0.11 ± 0.14 0.11 ± 0.09 0.14 ± 0.10 0.09 ± 0.08 0.11 ± 0.11

TABLE 3
Performance in AUC for all models and window cost functions, averaged over a test set. Note: lower AUC is

better. ABP are average best performing parameters computed from the indoors set using ground-truth; AGT
are average ground-truth histograms as proposed in Section 2.4 i.e. HSMs trained on the whole indoors set
using ground-truth; ML parameters are estimated for each image from WTA disparity, without ground-truth.

Optimal AUC values are shown for comparison and were computed by a slow offline optimization procedure
given ground-truth (minimum AUC across all parametric models and whole parameter space).

Test set: indoors (ABP/AGT is trained on the same set and requires GT disparity)
Optimal AUC Mat Mer Exp HSM

Cost (parametric) ABP ML ABP ML ABP ML AGT ML
SSD 5x5 0.083 0.087 0.088 0.091 0.087 0.087 0.086 0.088 0.106
SSD 9x9 0.058 0.063 0.063 0.065 0.063 0.063 0.062 0.062 0.085

SSD 13x13 0.056 0.060 0.061 0.062 0.060 0.060 0.060 0.060 0.084
BTSAD 5x5 0.066 0.069 0.067 0.070 0.068 0.069 0.067 0.058 0.065
BTSAD 9x9 0.051 0.055 0.054 0.056 0.054 0.055 0.054 0.045 0.058

BTSAD 13x13 0.050 0.054 0.053 0.056 0.053 0.054 0.053 0.046 0.064
Test set: outdoors (ABP/AGT is trained on a different set - indoors)
Optimal AUC Mat Mer Exp HSM

Cost (parametric) ABP-DS ML ABP-DS ML ABP-DS ML AGT-DS ML
SSD 5x5 0.223 0.230 0.233 0.233 0.229 0.230 0.232 0.225 0.256
SSD 9x9 0.175 0.180 0.184 0.183 0.181 0.180 0.183 0.176 0.230

SSD 13x13 0.202 0.205 0.207 0.206 0.206 0.205 0.207 0.200 0.273
BTSAD 5x5 0.147 0.152 0.153 0.155 0.152 0.152 0.153 0.153 0.157
BTSAD 9x9 0.117 0.121 0.123 0.124 0.121 0.121 0.123 0.122 0.136

BTSAD 13x13 0.145 0.148 0.149 0.149 0.148 0.148 0.149 0.145 0.168

TABLE 4
Performance in C(d ∈ GT )badpx. Note: higher C is better. See description in Table 3.

Test set: indoors (ABP/AGT is trained on the same set and requires GT disparity)
Optimal C Mat Mer Exp HSM

Cost (parametric) ABP ML ABP ML ABP ML AGT ML
SSD 5x5 0.108 0.083 0.090 0.097 0.097 0.083 0.090 0.077 0.083
SSD 9x9 0.091 0.076 0.072 0.084 0.086 0.076 0.074 0.061 0.066

SSD 13x13 0.101 0.086 0.073 0.093 0.094 0.086 0.073 0.060 0.072
BTSAD 5x5 0.109 0.087 0.086 0.088 0.095 0.087 0.086 0.076 0.094
BTSAD 9x9 0.099 0.084 0.083 0.090 0.090 0.084 0.083 0.067 0.085

BTSAD 13x13 0.112 0.095 0.094 0.104 0.103 0.095 0.094 0.070 0.088
Test set: outdoors (ABP/AGT is trained on a different set - indoors)

Optimal C Mat Mer Exp HSM
Cost (parametric) ABP-DS ML ABP-DS ML ABP-DS ML AGT-DS ML

SSD 5x5 0.065 0.053 0.049 0.052 0.062 0.053 0.050 0.031 0.043
SSD 9x9 0.059 0.047 0.036 0.045 0.051 0.047 0.036 0.025 0.028

SSD 13x13 0.046 0.037 0.029 0.036 0.039 0.037 0.029 0.022 0.020
BTSAD 5x5 0.084 0.063 0.060 0.055 0.072 0.063 0.060 0.040 0.061
BTSAD 9x9 0.079 0.055 0.045 0.048 0.061 0.055 0.045 0.030 0.050

BTSAD 13x13 0.069 0.048 0.039 0.043 0.051 0.048 0.039 0.027 0.040
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Fig. 5. C(d) given Merrell’s model with ABP and ML
parameters. Dashed red line indicates true disparity
d∗ as indicated by the dataset. Results taken from
pixel (364,150) of the Teddy image, as an example of
ML’s better performance seen in Table 2. ML does not
require ground-truth and leads here to higher C(d∗).

In this section we focus on the AUC criterion. We re-
mind that AUC measures whether higher confidence
WTA assignments are more likely to be correct as-
signments or not. The models’ AUC, averaged across
all images in each dataset, is shown in Table 3. Each
model’s performance is shown with ML and ABP
parameters. In case of the HSM, we also compare two
versions of the model, roughly corresponding to ML
and ABP. The first version is a no-ground-truth single-
stereo-pair model to which we will call ”ML HSM”.
This histogram is trained from WTA disparity costs
where left-right disparity is consistent, for each stereo
pair. The second is the ground-truth-trained model as
described in Section 2.4, computed from the costs at
true disparity of all stereo pairs in the indoors set. We
refer to it as ”average ground-truth” (AGT) HSM.

Table 3 also shows the optimal AUC across para-
metric models, for each cost function. These values
were obtained by a slow offline optimization proce-
dure given ground-truth data, searching the minimum
AUC across all parametric models and whole param-
eter space for each image. Values shown in the table
are the average over all test set’s images.

Arguably the most noticeable result is that the
AGT HSM model ranks 1st in most conditions, both
indoors (where it is trained) and outdoors. This in-
dicates the HSM model to be a good choice when
training on a dataset with ground-truth is acceptable.
Expectedly, a histogram can better model the real
distribution of costs than the parametric models here
compared - we remind that distributions in Figure
2 are not purely exponential or Gaussian. This can
also be seen clearly in the table results (indoors set,
BTSAD cost function) where the HSM performs bet-
ter than the parametric models’ maximum possible
performance (minAUC column). On the other hand,
the ML version of the HSM had poor performance,
meaning the data available on a single stereo-pair may
be insufficient to train the HSM for good AUC.

It is interesting to note, however, that cost function
choice is crucial: note how it had higher impact on the

AUC than model choice itself. We argue that the rea-
son for this is that the models presented here are well
estimated, rendering their fit to the real distribution,
and performance, very similar to each other. Note
again in Table 2 and 3 that obtained AUCs are very
close to their optimal values, both in the indoors and
outdoors set. Since optimal AUC depends on the error
rate achieved by each cost function, as shown in [8],
then as long as close-to-optimal AUCs are obtained on
each model, performance will depend mainly on the
cost function. The HSM seems to achieve AUC values
that are closer to the optimal for each cost function.

Importantly as well, the results show once more
that the usage of the datasets with ground-truth to
train parametric models is (not only tedious but also)
unnecessary, and our proposed ML strategy for para-
metric models leads consistently to high performance
without the need for GT.

5.4 All models: evaluation on winner-take-all fail-
ure

We now present all models’ performance regarding
C(d ∈ GT )badpx: the confidence given to true disparity
when WTA fails. We compare the different models
using this criterion in Table 4.

There is a different ranking of models in terms
of AUC and C, which suggests that the appropriate
choice of model for stereo applications strongly de-
pends on which criterion is to be optimized. However
Merrell’s model, which had already scored high in the
AUC criterion, performed highest in the C criterion
using ML estimation (i.e. without the need for training
with ground-truth datasets). Such consistency and
convenience of ML-estimated Merrell’s model makes
it a good candidate model for stereo applications.

Regarding the HSM model, its AGT (ground-truth-
trained) version performed quite low. Its ML (no-
ground-truth) version performed higher, even though
it was poor on AUC (Table 3). In the next section
we will see how this balance between AUC and C
is actually reflected on high performance of both
versions of the HSM in practice.

6 EXPERIMENTAL RESULTS ON APPLICA-
TION TO OCCUPANCY GRIDS

On a second experimental setup we evaluate the
different models on a real application, using our
occupancy grid method which integrates stereo con-
fidence. In this section we will describe the setup and
results, as well as discuss the relation between grid
performance and the AUC and C criteria results.

Our grid method assumes static scenes and so
the experimental evaluation was also conducted on
a dataset with no moving objects: the KITTI res-
idential area dataset ”2011 09 26 drive 0079” [26].
The dataset contains 100 synchronized stereo pairs,
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Fig. 6. The KITTI residential area dataset [26] used
for occupancy grid evaluation. Green regions on the
bottom image represent ground-truth occupied cells.
Blue points represent laser data at one of the frames.

laser rangefinder measurements and localization data
taken from a moving car, while no moving people or
moving cars can be seen. An image of this dataset is
shown in Figure 6.

In order to obtain a ground-truth grid, a simple grid
algorithm for range data was implemented and run on
all frames using the available laser rangefinder data:
cells that were occupied with point data in more than
a single frame were considered occupied and the rest
as free. The localization data, given by the dataset,
was assumed to be correct. Cell size used was 20cm x
20cm x 20cm and the resulting grid 60m x 12m x 3m.
Generated ground-truth is shown on Figure 6.

To quantitatively evaluate performance of the occu-
pancy grid method we take two measures: ”precision”
and ”recall”. Precision measures the fraction of cells
classified as occupied which are correct. It is defined
as tp

tp+fp , where tp (true positives) refers to the number
of cells correctly classified as occupied (i.e. occupancy
P > 0.5) and fp (false positives) refers to the number
of cells incorrectly classified as occupied. Recall mea-
sures the fraction of occupied cells correctly classified.
It is defined as tp

n , where n refers to the total number
of occupied cells on ground-truth data.

6.1 Model comparison: precision, recall, AUC and
confidence on ground-truth

We computed reconstruction performance with all
models, including the HSM, using both ABP/AGT
and ML parameter estimation. Results are shown
in Figure 7. For the ABP parameters of parametric
models, we ran the experiment with both maxC and
minAUC parameters (see Table 1). Their curves are
similar, though, and so we include only one of them

(minAUC) in Figure 7. Each dot in the figure repre-
sents one instant of time of the image sequence (i.e.
frame) and hence an update of the occupancy grid.
The first frames are marked with ”t=0”. Frames used
were: 0, 5, 10, etc, in multiples of 5.

The curves in Figure 7 show how the occupancy
grid algorithm leads to increasingly higher recall and
precision rates as new frames are processed. Precision
rates of around 0.9 and recall 0.5 are achieved by
most models by the end of the experiment. Another
observation is that precision increases slightly with
window size, which is consistent with the results in
Section 5.

Importantly, the HSM and Merrell models lead to
the highest final precision results across most cost
function and window size combinations, with the ex-
ception of BTSAD 5x5. The ML-estimated exponential
had slightly higher precision in that case, however at
the cost of low recall. Also note that the HSM model’s
curve is above other curves during most of the im-
age sequence, showing highest precision, although
this distance decreases as the number of used im-
ages increases. Models with ML and ABP parameters
perform similarly for each model-cost combination,
with the exception of Matthies’ and the exponential
models where ML leads to higher precision but lower
recall. These results are consistent with Tables 3 and
4: HSM and Merrell were best performing in either
the AUC or C criterion, also ML Exp and Mat had
lower C score than their ABP versions, corresponding
to the lower recall in the grid application. Overall,
higher C criterion is related to higher final grid recall
(correlation r = 0.29), but not related to precision in
our method. Lower AUC is also related to higher final
grid recall (correlation r = −0.35) and higher final
precision (correlation r = −0.48).

An interesting observation is how the ML HSM
lead mostly to the same performance as the AGT
one, even though AUC in the ML case was poor.
As we discussed in Section 5.3, the fact that an ML
HSM is computed from a single stereo pair could
lead to a sparsely populated histogram: thus leading
to a poor AUC because the confidence function is
not continuous (and ranking of pixels as a function
of error rates will also not be continuous). However,
the ML histogram is trained from costs at WTA dis-
parity where left-right disparity is consistent. Thus
the reason for the ML model’s poor AUC could be
its bad conditioning near cost values where errors
are common (and thus left-right consistency is often
not met), even though conditioning is good around
common cost values of true disparity. This would
explain the still high C(d ∈ GT )badpx result of the
model (see Section 5.4, Table 4), as well as its good
performance in the occupancy grid application. Such
observations again stress the need for criteria other
than AUC for stereo confidence model evaluation,
depending on the application.
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Fig. 7. Comparison of the performance of all models along time when used with the occupancy grid algorithm.
Each point represents a different instant of time, while the first frame of the image sequence is marked with ”t=0”.
”Mat ABP” overlaps perfectly with ”Exp ABP” on both cost functions, and ”Mat ML” overlaps perfectly with ”Exp
ML” for the BTSAD cost function.

Finally, in Figure 8 we show the reconstruction of
ML HSM and Merrell’s models (using BTSAD 13x13).
The HSM’s higher recall can be seen quite clearly (e.g.
the car and tree are better reconstructed), although the
number of false positives is also slightly higher (since
recall is higher and precision rate is not 1).

7 CONCLUSIONS AND DISCUSSION
In this article we evaluated several existing models of
confidence which are defined at the whole disparity
range. We proposed a new stereo confidence measure,
the Histogram Sensor Model (HSM), which consists
of a histogram of costs and improves performance
in several criteria (i.e. AUC, application to occupancy
grids). We also proposed a method to estimate para-
metric models’ parameters that avoids the need for
training with ground-truth data. All models were
evaluated when applied to two different cost func-
tions (SSD and BTSAD) at different window sizes and
model parameters. Contrary to previous stereo con-
fidence measure benchmark literature, we evaluate
the models not only using the WTA-relevant criterion
AUC, but also with a whole-cost-curve-relevant crite-
rion C(d ∈ GT )badpx: the confidence given to ground-
truth on WTA fail. Finally we evaluated the models on
a real-world application using a recent global formu-
lation of 3D reconstruction through occupancy grids.
Our experimental results lead to several conclusions:
• Performance of parametric confidence measures

varies drastically with parameter choice, con-

Fig. 8. Reconstruction results obtained using a BTSAD
13x13 cost function with the two top models: Merrell’s
model (top) and the HSM (bottom). Green squares
represent true-positives (i.e. cells correctly classified
as occupied), brown squares represent false-positives
(i.e. cells incorrectly classified as occupied).
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cretely showing a cliff-maximum-and-tail of per-
formance with parameters. This also leads to
the conclusion that over-shooting of parame-
ters is safer than under-shooting. The reason for
performance drop when parameters are under-
estimated is clear: since the analyzed confidence
functions are normalized exponentials of costs,
they tend to a min function as the cost normalizer
tends to zero (is under-estimated) - leading to a
single confidence maximum equal to 1.

• Our results indicate that it is possible in certain
applications to train parameters of the parametric
models from off-the-shelf datasets with ground-
truth disparity (i.e. using average best performing
parameters, ABP). However, care should be taken
such as to re-train the parameters every time
costs, prefilters or dataset conditions are changed.

• We proposed a systematic parameter estimation
method for parametric models using maximum
likelihood (ML), eliminating the need for any
ground-truth or offline training. Our results indi-
cated that these parameters lead to performance
in stereo which is similar but slightly closer to
the optimum when compared to ABP parameters
- which require training datasets with ground-
truth. At the same time, the proposed method is
trivial to implement and computationally inex-
pensive. ML should allow for better compensa-
tion of environment changes and be more practi-
cal when different cost or prefiltering options are
applied during the design stage of algorithms.

• The AUC criterion usually compared in the
benchmarking literature was shown to be less
informative than desirable when used to choose
the best model for a global method integrat-
ing confidence measures (Cost-Curve Occupancy
Grid [6]). We here proposed another criterion,
C(d ∈ GT )badpx, which is related to the recall of
the grid and ML HSM’s performance. Training of
parameters by optimizing C(d ∈ GT )badpx is also
subject to lower inter-image variance than AUC.

• In the occupancy grid application the HSM and
Merrell’s models performed best in terms of grid
precision. The HSM actually achieved higher pre-
cision earlier on (i.e. using a fewer number of
stereo pairs). On the other hand, the exponential
and Matthies’ models with ABP parameters lead
to overall high recall rates but lower precision.

• The HSM was the best performing model in
terms of AUC and occupancy grid precision
when trained on off-the-shelf datasets with
ground-truth. As seen by the shape of the HSM
(Figure 3), the distribution of costs at true dis-
parity is not well approximated by a distribution
of the exponential-family. We believe this to be a
good sign for a push in stereo research towards
non-parametric confidence models.

• For applications where AUC is an important

criterion, our results show however that the HSM
should not be trained on WTA disparity with few
data. Merrell’s model with ML parameters is a
good choice when ground-truth datasets are not
available for training, since it scores high in terms
of AUC, C(d ∈ GT )badpx and grid performance.

Important directions of research include new non-
parametric models of stereo confidence, or models
with low parameter sensitivity. We hope to have made
clear that more research into methods for online (no
ground-truth) estimation of model parameters has the
potential for high impact on stereo and its applica-
tions. Other approaches to training the HSM without
ground-truth may also be worth investigating, as is
the combination of different confidence measures [34].
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