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Abstract— Friction estimation from vision is an important
problem for robot locomotion through contact. The problem
is challenging due to its dependence on many factors such as
material, surface conditions and contact area.

In this paper we 1) conduct an analysis of image features that
correlate with humans’ friction judgements; and 2) compare
algorithmic to human performance at the task of predicting
the coefficient of friction between different surfaces and a
robot’s foot. The analysis is based on two new datasets which
we make publicly available. One is annotated with human
judgements of friction, illumination, material and texture; the
other is annotated with static coefficient of friction (COF) of
a robot’s foot and human judgements of friction. We propose
and evaluate visual friction prediction methods based on image
features, material class and text mining. And finally, we make
conclusions regarding the robustness to COF uncertainty which
is necessary by control and planning algorithms; the low
performance of humans at the task when compared to simple
predictors based on material label; and the promising use of
text mining to estimate friction from vision.

I. INTRODUCTION

The coefficient of friction between robot contacts and the
ground is an important input to model-based motion planning
and trajectory optimization methods with dynamics. Wrong
estimations of friction may lead to slipping, which in turn
causes challenges to state-of-the-art planners and controllers.
This fact has motivated recent work on state estimation
and slippage controllers [1], [2], [3], [4]. Friction prediction
from vision is not only an important problem but also a
challenging one: friction depends on many factors such as
contact area, surface conditions, material and context; and
is still not completely understood in humans despite some
interesting findings [5], [6], [7], [8].

From a robotics perspective, the existence of this paper
is especially motivated by the recent trend in legged and
humanoid robot motion planning field towards optimization-
based planners that rely explicitly on “known” coefficient of
friction values. Furthermore, this paper is motivated by the
lack of public datasets for understanding humans’ perception
of friction. We provide two datasets to the community,
from which we take conclusions regarding not only robot
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OSA+F dataset (8 materials, 96 images)

GTF dataset (14 materials, 43 images)

Fig. 1. The two datasets collected for this paper, one example per material
category. OSA+F dataset: carpet/rug, concrete, fabric/cloth, granite/marble,
metal, stone, tile and wood. GTF dataset: asphalt, brick, carpet/rug, cobble,
concrete, dirt, granite/marble, leaves, linoleum, metal, mud, stone, tile and
wood.

perception but also robot teleoperation and humans’ visual
perception of friction.

The contributions of this paper are the following:
• We describe, analyze and publicly provide1 two friction-

from-vision datasets in Section III. One is targeted at
quantification and benchmarking of friction estimation
methods for robot locomotion. The other is targeted at
understanding visual perception of friction by humans.

• We propose and evaluate methods for friction estimation
based on intrinsic images, gradient images, semantic
class predictions and text mining through word embed-
dings (Section IV).

• We make conclusions regarding the error associated
with friction estimation from vision, most informative
features for prediction and the dangers of assigning the
friction task to human teleoperators of robots.

II. RELATED WORK

The friction estimation literature in robotics has been
mostly focused on its measurement during contact. Examples
include COF estimation using specially-designed sensors [9],
and material classification through dynamic friction model
fitting while stroking surfaces with a robotic finger [8]. In
the legged robot locomotion literature, there is an interest
in identifying slips when they occur [1], [2], [3], in order
to trigger changes in controllers [1] or activate reflexes [4].
For example, [1] estimated slipping force by comparing
predicted ground reaction forces and those measured with

1The datasets are publicly available at:
http://www.martimbrandao.com/friction-from-vision/

http://www.martimbrandao.com/friction-from-vision/


a force sensor on the foot. On the other hand, [2] uses
Kalman filtering of IMU measurements to detect slippage,
and [3] applies a similar approach to a quadruped robot
which considers active contact information as well.

While such methods focus on detecting slippage for con-
trol purposes, motion planning algorithms have also been
adapted to decrease the risk of slipping even in low friction
conditions. For instance, [10] proposes a method for grasp
synthesis prioritizing low “friction sensitivity”, such as to
prefer grasp configurations that are stable even for low COF.
Similarly in the biped locomotion literature, [11] changes
parameters regulating center-of-mass motion such that the
minimum COF where the robot can walk without slipping is
decreased. And going further [12] plans robot configurations
and walking speeds for the same purpose.

Even if planning algorithms can adapt motion to increase
the range of COF where the robot can walk, it is still
important to have an estimate of the actual friction and its
uncertainty. Otherwise, planned motions may be too conser-
vative and suboptimal, or too aggressive considering reflex
controllers’ robustness. One option to tackle this problem is
through learning from experience. Notably, [13] uses visual
terrain classification and slope to estimate friction on a rover.
The authors train their models on image sequence datasets
of rover navigation. Compared to that work, we provide
open datasets where algorithms can be benchmarked and
human judgement data as well. We also propose a text mining
method that can provide a prior for friction even on terrains
without previous locomotion experience.

One of the friction estimation methods from text mining
we propose in this paper is similar to the method used for
affordance estimation in [14]. There, the task is to auto-
matically classify which actions can be applied to different
objects, which the authors compute using distances between
vector representations of words. While [14] computes noun-
verb relationship pairs, we take into account a list of possible
words related to slippage and their distance to a material
noun. Both our algorithm and others relying on material
classification are subjected to errors in image-based material
classifier performance. State of the art of material classifi-
cation is currently at around 70% [15], [16], and progress
in the area has been improving quickly. Also, recent GPU-
based scene understanding algorithms, for example [17]’s
integrated SLAM and scene understanding, are becoming
fast enough for robot locomotion applications, thus further
motivating this paper.

Human performance might inform the robotics and com-
puter vision community of features to use for prediction.
Healthy humans are capable of walking in diverse environ-
ments with different degrees of friction, and prospectively
adapt walking style before touching slippery surfaces [18].
Still, humans make friction judgement mistakes that lead to
slipping for example due to over-reliance on gloss or other
lighting-related visual features [5]. Humans also use other
cues such as texture smoothness [6], and presence of water
or other contaminations [7].

III. FRICTION FROM VISION DATASETS

We now describe our methodology for obtaining the two
datasets used for analysis: the OpenSurfaces and Friction
dataset (OSA+F) and the Ground-truth coefficient of Friction
dataset (GTF).

A. OpenSurfaces and Friction (OSA+F)

The OSA+F dataset is targeted at prediction and under-
standing of human judgements of surface friction during
human locomotion.

Due to its variety of annotations, we started from the
open and crowd-sourced OpenSurfaces dataset [19], along
with the texture attribute annotations of [16], referred to as
OSA (OpenSurfaces plus texture Attributes). Each image is
annotated with segments drawn by the subjects and each
segment is attributed an object name, material class (1 out
of 22) and the applicability of texture classes (boolean vector
of size 11, e.g. whether the segment’s texture is chequered
or not, marbled or not, etc). Albedo and reflectance judge-
ments also exist for most segments. We considered the
data available with the OSA dataset most suitable for the
friction estimation task since human judgements of friction
are usually associated with gloss [5], material and texture
[6].

We selected a high-quality, class-balanced subset of the
OSA dataset appropriate for our task. First, for high-quality
annotations, we discarded segments with negative judgement
scores. Since our goal is to obtain a dataset for friction esti-
mation of locomotion surfaces, we only considered segments
corresponding to traversable planar surfaces. Traversability
was manually annotated by the authors. From the high-
quality traversable segments we selected 96 segments for
the OSA+F dataset. These were obtained by solving a
mixed-integer linear program maximizing total segment area,
subject to the constraints: 1) each material has exactly 12
occurrences in the dataset, 2) each texture has at least 10
occurrences in the dataset, 3) each image has only one
segment in the dataset (to prevent similar segments from the
same image). The resulting OSA+F dataset thus consists of
96 segments, from 96 images, and 8 material classes with
12 occurrences each. We show one example image for each
material class in Figure 1.

We collected human judgements of friction for each image
segment through an online survey with random image order,
one image per page, prepared using the Limesurvey software
[20]. Subjects were 14 graduate students from the mechanical
engineering department with normal or corrected-to-normal
visual acuity. Each image segment was judged by the subjects
using a slipperiness Likert scale of 1 to 6 (i.e. 1 least
slippery, 6 most slippery). We opted for this scale after
preliminary experiments showing larger scales to be difficult
to judge, “slipperiness” to be easier to rate than “friction”,
and because the same scale is used on different material
judgement experiments in the human vision literature [21].
The explanation of the scale was present in all pages. The
questions were framed as how slippery the subjects expected
the surfaces to be in case they were walking on them with



Fig. 2. Left: example image from the GTF dataset overlaid with a red
square indicating where the coefficient of friction was measured. Right: sole
of the humanoid robot foot used for the coefficient of friction experiments,
GTF dataset.

their normal shoes. As a post-processing stage we normalized
judgements to a friction scale instead of slipperiness (i.e.
y = 1 − ylikert

6 , thus 0 is lowest friction, 5
6 highest). On the

survey, segments were indicated by a red square overlaid on
the image, computed as the largest-area square inside the
OSA segment. See Figure 2 (left) for an example.

B. Ground-truth coefficient of Friction (GTF)

The GTF dataset is targeted at prediction of coefficient
of friction estimates from images for robot locomotion, and
includes also human predictions as a baseline for algorithm
evaluation. Importantly, coefficient of friction depends on
properties of both surfaces in contact, and thus the main
objective of building this dataset is not to train predictors
applicable to all robots, but to quantify humans’ and algo-
rithms’ performance at the task. Our assumption is that the
conclusions taken from our robot foot’s data may generalize
to different robot feet as well.

The dataset consists of 43 mostly outdoors images. These
are annotated with material class, ground-truth coefficient
of friction measured on a humanoid robot foot, and human
judgements of friction similar to those in OSA+F. We show
the human-sized humanoid robot foot we used in Figure
2. The foot is rigid and its sole is covered with a high-
stiffness soft material for shock absorption and an anti-
slippage sheet. Locations of the dataset images were chosen
such as to cover the same material classes as in OSA+F, as
well as extra “dirt”, “mud” and “leaves” classes which are
common outdoors. At each location, we first measured the
maximum friction force by pulling the foot with a spring-
scale until it started moving for around 10 trials. We recorded
the static coefficient of friction value as the average of the
trials divided by the foot’s weight. The standard deviation of
COF measurements over trials was on average σ = 0.047.
The foot was loaded with a 1.5kg mass and surfaces were
checked to be horizontal with a spirit level device. After
measuring the coefficient of friction, we removed the foot
from the locomotion surface and took pictures of the surface
and surroundings using a consumer level camera, along
with an annotation of the image location where friction was
measured. See Figure 2 for an example picture.

Human judgements of friction were collected as well,

using the same procedure as in OSA+F. However, all subjects
were given the actual robot foot to look at, feel and exper-
iment on their tables before taking the survey (all subjects’
tables were of the same material). The questions were framed
as how slippery the subjects expected the surfaces to be in
case they were walking on them while wearing the robot’s
feet as shoes. The subjects responding to this survey were
12 of those who also participated in the OSA+F survey. The
dataset contains images of asphalt (3), brick (3), carpet/rug
(5), cobble (1), concrete (3), dirt (4), granite/marble (3),
leaves (1), linoleum (2), metal (8), mud (1), stone (1), tile
(6) and wood (2). We show one example image for each
class in Figure 1. Unlike the OSA+F dataset, GTF is not
class-balanced. Some material classes are under-sampled,
which creates difficulties in training-based algorithms using
material class as a feature. In Section IV-D.2 we propose a
solution to one of such difficulties: friction prediction without
training examples using material class prediction and text
mining.

IV. ALGORITHMS FOR FRICTION FROM VISION

A. Friction from shading

Higher gloss surfaces are usually judged by humans
(sometimes mistakenly [5]) as more slippery. Inspired by this
observation, we use shading as a feature for friction predic-
tion. Intuitively, we can make an algorithm that analyzes the
shading of the scene and classifies a surface as more slippery
if it has glossy specular reflections, and less slippery if it is
more matte.

We first estimate shading by an intrinsic image decompo-
sition algorithm. These algorithms decompose an original
image I into two layers: a shading layer S (irradiance,
illumination) and reflectance layer R (albedo, the surface’s
color). The layers are estimated such that I = R ·S. Several
algorithms exist to estimate this decomposition, such as
Retinex [22] or other more complex examples [23]. In this
paper we use the Retinex algorithm (implementation in [24])
due to its order of magnitude faster computation time while
still achieving high performance [23]. Given an input image,
we run Retinex to obtain its shading image and compute the
histogram of shading values over the region of interest to
estimate friction in that region. We use the the maximum
and standard deviation of shading as features:

fShadMax = max
(i,j)∈C

(Si,j), (1)

fShadStd =

√√√√ 1

N

∑
(i,j)∈C

(Si,j − S̄)2, (2)

where i, j are indices of the the shading image inside the
region of interest C, N is the number of pixels in that region
and S̄ the region’s mean shading. During training, we fit the
features to training data using ordinary least squares (OLS)
linear regression.



B. Friction from roughness

Humans also use visual estimations of surface roughness
to predict friction [6]. Intuitively, frequent variations in image
intensity can be used to predict high surface roughness,
which is generally associated with high friction.

In this paper we compute the magnitude of the image
gradient with a Sobel filter and use the average magnitude
of the response as a feature:

fGradMu =
1

N

∑
(i,j)∈C

‖∇Ii,j‖, (3)

where i, j are indices of the image inside the region of
interest C and N the number of pixels in that region. During
training, we fit the features to training data using OLS linear
regression.

C. Friction from semantic classes

We also use high-level semantic cues for friction estima-
tion based on material, texture and scene classes. We assume
these classes are known, given by image-based classifiers
such as [15], [16] for material and textures, and [25] for
scenes.

Given an input image of material m, we predict friction
to be the mean over the training set y on images of the same
material:

fMatMean(m) =
1

|M |
∑
k∈M

yk, (4)

where M is the set of images labeled with material m. When
the input image material m is not present on the training set,
we use an average friction prior fMatMean(m) = ȳ.

We apply the same logic for texture and scene label
features fTexMean, fSceMean.

D. Friction from semantic classes and word embeddings

The previous semantic-class method has a disadvantage: it
uses a very rough prior for classes not in the training set. For
example, if an image-based classifier predicts a surface to be
of the material “asphalt” but the friction training set consists
only of COF measurements for “concrete” and “ice”, the
average of the two COF is probably much lower than that of
asphalt even though it is intuitively more similar to concrete.
We argue that to solve this problem we can use text mining.
Text mining methods such as LSA [26] or word embeddings
[27], [28] have been used to obtain affordance relations [14]
and various other semantic relations [27]. In the case of this
paper we are interested in material-material relations such
as “asphalt is similar to concrete”, and material-slipperiness
relations such as “asphalt co-occurs with the word slippery
often”. We explore both these kinds of relations in this paper
through the use of word embeddings.

Word embedding algorithms, such as Word2vec [27] or
GloVe [28], embed words into semantic vectors. Each word
is represented by a vector of usually 50 to 1000 dimensions,
and the cosine similarity between words

ci,j =
wi · wj

‖wi‖‖wj‖
, (5)

is proportional to their co-occurrence in the training set.
Here wi is the vector representing word i. Using the pre-
vious example, we can thus estimate the co-occurrence of
“asphalt” with “concrete”, or even “asphalt” with “slippery”
by simple internal products to estimate how similar the
two materials are, or how slippery asphalt is. In this paper
we trained Word2vec and GloVe models on the complete
Wikipedia article dump of 20080103. We chose algorithm
parameters by varying them within the ranges recommended
in the respective publications, such as to optimize model
performance on the semantic tasks described in [28]. Final
parameters common to both algorithms were: vector dimen-
sion 400 and window size 10. Word2vec-only parameters
were: CBOW architecture, negative sampling 10, frequent
word sub-sampling 10−5.

After word embeddings are trained, we use semantic
similarity queries to estimate friction of an input material.
Since the word embeddings exist for all words on the text
corpus, we can theoretically estimate friction for thousands
of classes. We propose two algorithms for estimating friction
using word embeddings.

1) Material-Material similarity: For materials present in
the training set this method is the same as the semantic-class
method described in Section IV-C. However, when the input
image material m is not present on the training set, we use
the friction of the “most similar material” m̂ in the training
set:

fWordMM(m) =
ȳ + fMatMean(m̂)

2
. (6)

m̂ = arg max
j
cm,j , (7)

We average fMatMean(m̂) with the friction prior ȳ in order to
attenuate errors due to possible wrong material associations.

2) Material-Slipperiness similarity: In this method we
estimate friction by word-similarity between the queried
material name and a list L of slipperiness-related words2.
The intuition behind this approach is that the more often
a material co-occurs with words such as “slip”, “slipped”,
“slippery” in text then the more likely it is to be slippery for
the average contact material. The advantage of the method
is that no friction measurements have to be made in order
to rank materials by predicted friction, which might be
sufficient for some robotic applications (e.g. always plan
paths through least slippery options). In this paper we still
linearly fit the function to training data, just like with the
rest of the features. The feature we propose is the maximum
similarity between an input material m and the slipperiness
words in list L:

fWordMS(m) = max
j∈L

cm,j . (8)

2The full list of slipperiness-related words we use is: slipped, slipping,
skid, slue, slew, slide, skidded, slued, slided, skidding, slueing, sliding,
lubricious, nonstick, slick, slimed, slimy, slithering, slithery. They were
obtained by searching and conjugating words related to the word slip on
WordNet [29].
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Fig. 3. Average and standard deviation of friction judgements for each
material, texture and scene label on the OSA+F dataset.

V. RESULTS

We now analyze the data collected and friction predic-
tion results. We chose to use two metrics for algorithm
evaluation: 1) Root Mean Squared Error (RMSE) between
real and predicted friction values on the test set. Results
reported are 2-, 5- and 10-fold cross validation values of
the RMSE (i.e. average RMSE over the 2, 5 and 10 test sets
respectively). All dataset splits are provided together with
the datasets. 2) Pearson correlation significance (p < 0.05 or
p < 0.01) between real and predicted friction values on the
whole dataset. We use this metric to estimate how chance
could be responsible for the correlation between algorithms’
predictions and real friction. Due to the relatively small size
of the datasets, we choose to report p values on the whole
dataset instead of the test sets.

A. OSA+F

Analysis of the dataset
We computed the average and standard deviation of

friction judgements for each material, texture and scene.
According to a 2-way ANOVA, several relationships between
materials are statistically significant: carpet’s friction esti-
mates are higher than all other classes; and concrete, fabric,
metal and stone are all higher than granite, tile or wood.
In the case of textures, the only significant difference is
between the labels grid and paisley. Scenes are also poorly
informative in this dataset: the only significant difference is
between bedroom and foyer. These results indicate material
to be a better candidate for prediction of human judgements
of friction. We show the average and standard deviation of
friction judgements per material in Figure 3.

One recurrent observation in human perception literature
is the reliance of humans on gloss to estimate friction. We
test this hypothesis on the dataset by a Spearman correlation
between friction judgements and gloss/shine estimates as
given by the original OpenSurfaces dataset. The Spearman
correlation coefficient is r = −0.344 (p < 0.01), which in-
dicates a significant relationship between the two. However,
when computing the correlation independently for each ma-
terial class, we found that gloss only correlates significantly
with friction judgements for the material granite/marble r =
−0.781 (p < 0.01).

Fig. 4. 8 images from OSA+F sorted from highest to lowest average
friction judgements. From top to bottom: original image, gradient image,
shading image, histogram of shading image.

Figure 4 shows 8 images of the dataset sorted from
highest to lowest mean human friction judgement. For each
image we also show data used for image-based features:
the gradient image, the shading image and the histogram
of values in the shading image. Interestingly, we note that
floors with strongly specular reflexions (i.e. higher gloss)
are considered the most slippery of the whole dataset, which
can be observed in the shading image by larger mean and
maximum shading values. The figure also shows that simple
single features such as gradient or gloss are insufficient
to predict human judgements of friction. For example, the
surface with most perceived friction (a carpet) is according
to our simple “maximum shading” feature very slippery due
to what looks like a glow in the surface.

Algorithm evaluation
We set y, the target function to be predicted, as the average

of human friction judgements for each image. In Table I
we show the algorithm evaluation results on the OSA+F
dataset. We show both 10-, 5- and 2-fold cross validated
RMSE values, the algorithms’ rank according to the average
of the previous three values, and significance of Pearson
correlation. The results in this table were obtained assuming
ground-truth material, texture and scene classes are known by
the algorithms. We use the following two baselines for better
comparison and interpretation of the results: 1) “Constant
friction” baseline: the mean of y over the training set is used
as the prediction; and 2) “Single subject” baseline: we use
a single subject’s friction estimates as the prediction. We
do this for each subject as a predictor and then average
the results over all subjects. The objective is to measure
performance of a single human in accomplishing the same
task as the algorithms (i.e. estimate the average person’s
friction judgement).

The single subject baseline achieved 0.104 RMSE on 5-
fold cross validated results, which was slightly lower than
the constant friction baseline (0.137) but indicates high
variability among subjects. In fact, inter-subject variability is
high (σ =0.166, or 41% of the mean). The best performing
algorithms were MatMean and WordMM, which scored
0.083 RMSE. In these experiments MatMean and WordMM
are in fact equivalent, since the dataset is class-balanced and



TABLE I
OSA+F: PREDICTING MEAN HUMAN DATA

Features RMSECV10 RMSECV5 RMSECV2 p AvgRank

Const 0.137 0.137 0.140 2
SingleSubj 0.103 0.104 0.104 * 1

HumanGloss 0.131 0.129 0.132 * 5
GradMu 0.137 0.138 0.142 8
ShadStd 0.125 0.125 0.129 * 3
ShadMax 0.128 0.128 0.131 * 4
TexMean 0.136 0.137 0.140 * 6
SceMean 0.142 0.134 0.158 * 7
MatMean 0.081 0.083 0.086 * 1
WordMM 0.081 0.083 0.086 * 1
WordMS 0.137 0.138 0.142 9

Note: p < 0.05 is marked with *, p < 0.01 with **. TexMean, SceMean,
MatMean, WordMM and WordMS use ground-truth semantic labels (i.e. of
texture, scene, material).

as such all materials are present on the training set. This
result matches the previously stated observation that in this
dataset material is highly discriminatory.

Interestingly, human judgements of gloss as provided by
the original OpenSurfaces dataset scored 0.129 RMSE. The
simple statistics of shading images we developed, ShadStd
and ShadMax, had a similar but slightly lower error (0.125
and 0.128). All other features either performed at constant
baseline level or did not have significant correlation with the
mean human judgements. In general, features had similar
performance at the different cross validation ratios.

Word embeddings on a larger number of materials
In the previous experiment the method based on material-

slipperiness word similarities (WordMS) performed at base-
line level and did not correlate significantly with human
judgements. The actual correlation of the metric with slip-
periness judgements in general is nevertheless difficult to es-
timate from this dataset due to its small number of materials,
which is 8. We conducted one further experiment where we
asked 19 new subjects to rank a list of 19 different materials3

from most to least slippery. The question included only
the names of the materials and no supporting images. We
computed the average ranking of materials over the subjects
and compared this average with the word similarity score
given by WordMS (8). The Spearman correlation between
the human rankings and fWordMS was a low but significant
r = 0.4607 (p < 0.05). Word embeddings trained on
Wikipedia thus seem to encode some knowledge of human
judgements of friction, even though at a low correlation level
not visible on the OSA+F material classes.

B. GTF

Analysis of the dataset
We did the same analysis as in the OSA+F dataset with

GTF data, now targeted at robot locomotion. Figure 5 shows

3The complete list was: asphalt, brick, cardboard, carpet/rug, ceramic tile,
concrete, fabric/cloth, glass, grass, ice, leather, linoleum, marble/granite,
metal, mud, plastic, puddle on asphalt, stone, wood. The subjects were told
that with the exception of ice, mud and puddle all materials were dry. Like
the original OSA+F task, we also told the subjects to make their judgements
assuming they are walking with their normal shoes.
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Fig. 5. Average and standard deviation of human judgements of friction
(left), and real COF (right) for each material on the GTF dataset.

Fig. 6. 8 images from GTF sorted from lowest to highest COF. From
top to bottom: original image, gradient image, shading image, histogram of
shading image.

the average and standard deviation of friction judgements and
real COF for each material. According to a 2-way ANOVA,
linoleum had significantly higher friction than all other
materials except mud and stone. Wood, asphalt and mud
were significantly larger than dirt and leaves. Interestingly,
the high COF of mud was not predicted by most human
judgements, because contrary to some subjects’ intuition
mud was sticky rather than slippery. Finally, carpet COF is
only significantly higher than dirt.

We also show 8 images of the dataset sorted from lowest to
highest COF in Figure 6. We can see how this dataset is more
challenging than OSA+F. Surfaces with least friction now
include both leaf-covered and wet concrete. The intrinsic
image decomposition does not detect specular reflections on
the wet case, leaves lead to what could naively look like
a surface of high roughness (when in fact leaves can slide
easily), glossy wood is actually not slippery for the robot
foot because of its anti-slippage sheet, etc. Such examples
indicate once again that material classification might be the
safest option to friction estimation, although detection of
surface “contamination” is crucial as well (e.g. of water, oil,
leaves, grain, dust). In fact, one main observation we made
during the collection of this dataset was that since the foot is
flat, smooth and rigid, its COF is the lowest on contaminated
surfaces: clean marble had high friction, dusty was low; small
1mm2 stones, leaves, or water drastically reduced the COF.

Algorithm evaluation
For this dataset we set y, the target function to be

predicted, as the real COF. In Table II we show the algorithm
evaluation results. As in the previous section, the results



showed in this table were obtained assuming ground-truth
material is known. We use the following two baselines for
better comparison and interpretation of the results: 1) “Con-
stant friction”, and 2) “Single subject” baselines are the same
used for the evaluation of OSA+F. “Single subject” estimates
are thus human judgements of friction, while the target
function y is the real COF. The motivation for evaluating
this metric is to find out whether an average inexperienced
robot operator, even if familiarized with the robot’s foot, can
predict or not the friction coefficient between the robot and
ground. This has of course strong implications for the design
of control architectures and interfaces for remotely controlled
robots. Finally, we also evaluate another baseline: 3) “Mean
Subject” the average of the subjects’ friction judgements.
Thus, we measure how much a group of inexperienced robot
operators, instead of a single operator, can help predict
COF. The motivation is to compare this metric with the
single subject metric, thus helping to understand whether an
increase in robot operators (e.g. crowd-sourced operators)
may increase prediction performance.

Constant friction baseline in this dataset achieves 0.194
RMSE on 5-fold cross validate results. Perhaps surprisingly,
single subject judgements of friction achieve performance
roughly equal to constant baseline, meaning they are poorly
predictive of real COF in this dataset. Also, using multiple
subjects (MeanSubj) did not improve performance consider-
ably when compared to the average result obtained with a
single subject. Image features (GradMu, ShadStd, ShadMax)
were roughly as predictive as human judgements, actually up
to 6 % better. However, the image features’ correlation with
real COF was only significant for ShadMax, which was also
a good predictor in the human data of the OSA+F dataset.

Once again material classification, MatMean, was the
highest scoring method, achieving 0.137 RMSE on 5-fold
cross validation. WordMS further improves performance by
around 2% since it deals with classes unseen on the training
set. Interestingly, our material-slipperiness word similarity
method WordMS achieved higher (and statistically signif-
icant) performance when compared to both human judge-
ments and image features. Results shown in Table II for
WordMM and WordMS were obtained using the Word2vec
algorithm for word vector training. We also evaluated perfor-
mance on a different word embedding algorithm, GloVe [28],
which is together with Word2vec currently one of the best
performing on semantic tasks [30]. On average, the RMSE
on GloVe-trained vectors was 3% higher.

VI. CONCLUSION AND DISCUSSION

Friction prediction from visual cues is a challenging but
crucial problem for robot locomotion. In this paper we
described and analyzed two new open datasets for friction
estimation. We collected both COF and human judgement
data in order to provide room to inform both robotics and
human perception communities. Lastly we proposed and
evaluated a set of methods for friction prediction. Overall,
we importantly observe:

TABLE II
GTF: PREDICTING COF

Features RMSECV10 RMSECV5 RMSECV2 p AvgRank

Const 0.188 0.194 0.182 3
SingleSubj 0.176 0.187 0.189 2
MeanSubj 0.174 0.186 0.187 1

GradMu 0.172 0.180 0.176 5
ShadStd 0.177 0.191 0.196 6
ShadMax 0.171 0.187 0.182 ** 4
MatMean 0.130 0.137 0.134 * 1
WordMM 0.127 0.135 0.141 * 2
WordMS 0.155 0.170 0.180 ** 3

Note: p < 0.05 is marked with *, p < 0.01 with **.

Robot teleoperation. Human judgements have low pre-
dictive power of COF in the GTF dataset, meaning it
might be a wrong choice to trust slipperiness judgement to
inexperienced robot operators even if they are familiarized
with the robot’s foot. We can also imagine a robot operation
setup where several perception decisions are crowd-sourced
over a group of operators. However, even using the mean of
12 subjects as a predictor leads to lower performance than
image-based statistics. Constant-friction baselines might ac-
tually be safer than human guesses according to 2-fold cross
validated results. The observation matches recent findings in
the human literature [6] where COF was difficult to estimate
for humans. Our proposed image-based feature related to
gloss, the maximum image shading, obtained better, signif-
icantly correlated, performance than humans. While friction
prediction based on material class was the best performing
method, the material classification task is still challenging for
state-of-the-art computer vision algorithms (70% accuracy
[15], [16]). Thus, one way a robot teleoperator could assist
the procedure could actually be by material labeling.

COF prediction errors. Material was the most predictive
feature for both COF (0.130 RMSE) and human judgements
of friction. Image features based on intrinsic shading images
performed worse (0.171 RMSE) but slightly better than
baseline. Both in this paper and others relying on material
classification for predicting friction (e.g. [13]), problems may
arise when new materials are traversed. Thus, we proposed
methods based on text mining for friction estimation of
previously unseen material classes. Matching new materials
to trained ones by material-material similarity improved
performance by 2%. Estimating friction of a material by the
co-occurrence of the material with slipperiness-related words
in text was better (0.155 RMSE) than image-based statistics
and human subjects at COF-prediction.

Text mining and word embeddings. Algorithms based
on text mining may compensate for lack of robot experience
in novel scenarios, and are also likely to improve their
performance as Natural Language Processing algorithms
improve. An interesting open problem is to find ways to
adapt the methods based on text mining we proposed here.
One important improvement would be to estimate friction
between two specific materials. As proposed here, WordMS
estimates friction from co-occurrences between material and



slipperiness-related words. Therefore, it obtains not an es-
timate of friction between two specific materials, but an
average estimate of friction of the reference material with
all materials which co-occur with it in text.

Human perception. We also replicated recent results in
the human perception literature, correlating human judge-
ments of friction and surface gloss/shine [5]. However, we
found that this correlation was only significant for the marble
material (but not, for example, for tiles). We hypothesize that
humans rely on illumination-based features only for certain
materials for which it might be predictive.

Research directions. Interesting problems to further
explore on the friction-from-vision topic and in the
OSA+F/GTF datasets include new prediction methods; fur-
ther testing of hypothesis regarding human perception of
friction; using surrounding context (e.g. objects in the scene);
and building new very large crowd-sourced datasets. While
building new, larger, completely robot-acquired datasets
would be advantageous for the field and allow the application
of methods based on deep neural networks [16], [15], several
challenges still lie ahead since autonomous locomotion in
varied terrain by complex robots is still an open problem.
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