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Abstract— In this paper we tackle the problem of visu-
ally predicting surface friction for environments with diverse
surfaces, and integrating this knowledge into biped robot
locomotion planning. The problem is essential for autonomous
robot locomotion since diverse surfaces with varying friction
abound in the real world, from wood to ceramic tiles, grass or
ice, which may cause difficulties or huge energy costs for robot
locomotion if not considered. We propose to estimate friction
and its uncertainty from visual estimation of material classes
using convolutional neural networks, together with probability
distribution functions of friction associated with each material.
We then robustly integrate the friction predictions into a
hierarchical (footstep and full-body) planning method using
chance constraints, and optimize the same trajectory costs
at both levels of the planning method for consistency. Our
solution achieves fully autonomous perception and locomotion
on slippery terrain, which considers not only friction and its
uncertainty, but also collision, stability and trajectory cost. We
show promising friction prediction results in real pictures of
outdoor scenarios, and planning experiments on a real robot
facing surfaces with different friction.

I. INTRODUCTION

Legged and humanoid robot locomotion planning is an
important problem for disaster response and service robots.
One of the difficulties of this problem is the complexity of
general environments and the need to consider several factors
such as collision, energy consumption, surface geometry and
friction. In this paper we deal with the specific problem
of humanoid robot locomotion when environment friction
is considered. Our claim is that friction and its uncertainty
can be estimated from vision and robustly integrated into
algorithms for motion planning with contact. We argue that
even if the precise coefficient of friction cannot be predicted
from vision before touching a surface, priors and accumu-
lated experience associated with surface material or condition
(think coefficient of friction tables) can provide a probability
distribution of friction. Motion planning with contact can
also become prohibitively expensive once multiple factors are
considered, such as locomotion cost, collision and friction. In
this paper we propose a hierarchical approach to the problem,
where a footstep planner optimizes the same cost function as
a full-body motion planner by use of an oracle, and considers
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collision and friction by using simple bounding box collision
checks and an “extended footstep planning” [1] approach.

The contributions of this paper are the following:
• We propose a solution to the friction from vision prob-

lem using a state-of-the-art deep Convolutional Neural
Network (CNN) architecture to predict broad material
classes from images, together with known (or learned)
distributions of material friction;

• We propose a hierarchical planning architecture for
biped robots that optimizes the same objective at both
levels, and deals with friction, stability, collision and
cost to produce full-body trajectories;

• We show empirical friction prediction results, as well
as planning experiments which show the usefulness and
applicability of the approach in complex environments
with varying friction.

II. RELATED WORK

Recent full-body motion planning [2], [3] and control
[2], [4], [5] algorithms for legged robots have started to
consider friction by using friction cones in optimization
problems. Such methods rely on the fundamental assumption
that the coefficient of friction can be predicted in advance.
While in itself a challenging problem, partial evidence from
human visual perception motivate such an approach to the
problem. For example, humans are known to use visual cues
to estimate friction, related to surface texture [6], shine [7]
and detection of materials or contaminants (e.g. water) [8].
Furthermore, in the human gait literature there is evidence
that humans use accumulated previous experience to predict
friction and adapt walking style before touching slippery
ground [9]. In this paper, such “accumulated previous expe-
rience” is implemented as probability distributions of friction
associated with material classes. The term “material” is used
in a broad sense to refer to visually classifiable classes related
to material, condition and context (e.g. “dry metal”, “wet
asphalt road”). The use of material classes for prediction here
is motivated by a recent study [10] which identifies material
as one of the most predictive features of both coefficient of
friction values and human judgements of friction.

Friction estimation work related to this paper includes
that of Angelova et. al [11], which predicts the percentage
of slip (i.e. lack of locomotion progress) of a rover from
terrain classification and slope. Predictions are made based
on non-linear regression of data gathered on a learning stage.
Compared to [11], we estimate the coefficients of friction
instead of slip, we use open segmentation datasets [12], [13]
to train material classification, and we decouple the problem



from the physical robot. Importantly, our approach allows
for sharing material friction data among different robots as
long as they have similar foot soles.

Several approaches exist to the friction-constrained motion
planning problem for legged robots. One approach is the non-
hierarchical, full-scale trajectory optimization formulation
with implicit contact constraints of [14], [15]. While techni-
cally elegant and showing promising results, these can still
be computationally expensive for online planning. In order to
make the problem tractable, full-body motion can be planned
after contact (or footstep) planning [16], [17], in what is
called the contact before motion approach. One common
issue with such methods is that contact planners do not take
the same friction or trajectory criteria into account as the
subsequent full-body planners. One exception to this lack of
consistency between planning levels is the extended footstep
planning work of [1], in which learned models are used at
the footstep planning level that predict full-body feasibility.
The approach can also account for friction constraints by
using timing variables and learned slippage models at the
footstep planning level. Still, in [1] the costs optimized at the
footstep planning level are not further optimized at the full-
body level. In this paper we improve the method by using an
oracle at the footstep planning level which predicts the costs
obtained by a full-body trajectory optimizer, thus increasing
consistency across planning levels.

III. FRICTION FROM VISION

In this paper we propose to estimate friction of surfaces
from visual input by classifying surface material at each
image pixel and assuming known (or learned) probability
distributions of friction for each material. For convenience
we will use the term “friction of a material” to refer to
the coefficient of friction between the robot foot sole and
a second surface of a given material.

We consider a pixel-wise labelling algorithm that, given
an input image I with n pixels, provides a probability
distribution P (X|θ, I), where X = {x1, ..., xn} are the
pixel labels and θ are internal parameters of the algorithm.
Each pixel can take one of m possible labels, such that
xk ∈ L = {l1, ..., lm}. Furthermore, let each label be a
material associated with a probability distribution function
(p.d.f.) of a coefficient of friction p(µ|li). Then at pixel k,
the conditional p.d.f. of µ is

p(µ|θ, I) =

m∑
i=1

p(µ|li)P (xk = li|θ, I). (1)

For the results shown in this paper we estimated the
friction distributions p(µ|li) experimentally, by measuring
maximum friction force of the robot foot on several surfaces
for each material. We describe the procedure in more detail
in Section V.

We use a deep convolutional neural network (CNN) to
obtain pixel-wise material predictions P (xp = li|θ, I). In
particular we use the encoder-decoder architecture of [18],
which achieves good results in image segmentation applica-
tions and is characterized by a low number of parameters. Its

Footstep 

planner 

Trajectory 

optimizer 

Spline 

interpol. 
Stabilizer 

Oracle 

Planning stage 

Learning stage 

Friction-annotated 

point cloud 

Robot 

Fig. 1. Our hierarchical planning architecture, which uses trajectory
optimization to minimize a cost function fcost, as well as oracle costs to
plan footstep placement and timing that will have low predicted fcost.

low number of parameters leads to fast inference, which is
crucial for robotics. The architecture consists of an encoder
network of 13 convolutional layers as in VGG16 [19],
followed by a decoder network of 13 layers and a final
softmax layer. The output of the last layer of the network (a
softmax classifier) is at each pixel a vector of probabilities
for each class, that is, the probabilities P (xp = li|θ, I) used
in equation (1).

IV. HIERARCHICAL PLANNING

In this paper we plan full-body robot motion using a
contact before motion approach. A footstep planner first
searches a stance graph using transition costs provided by
an oracle. The stances are then used as constraints in a full-
body trajectory optimizer that considers full-body trajectory
costs, collisions, joint limits and static stability. The obtained
trajectory is finally interpolated and locally adapted for
dynamic stability using a ZMP-based method. The oracle
basically takes each stance transition and predicts the costs
obtained at the end of the whole planning pipeline. This leads
to footstep plans which optimize the same criteria as the full-
body planner. See Figure 1 for a visual representation of the
architecture.

A. Extended footstep planning with an oracle

The footstep planner searches a graph of stances to find
a feasible path between the start and goal stance. Each
node in the graph is a stance s, which is defined by a
set of contacts with the environment. A contact is a tuple
(link, position, rotation). A neighbor stance s′ either adds
or removes a contact with respect to s. In this paper we
deal with biped walking only, and hence stances simply
transition from double-support to left-foot-contact, to double-
support, to right-foot-contact, back to double-support, etc.
The advantage of this representation instead of, for exam-
ple, double-support stances only, is that the swept-volume
between consecutive stances can be used by the optimizer to
guide a swing leg out of collision. Such an approach is also
used by other works focusing on collision detection [20].

In this paper we use the extended footstep planning
framework of [1]. The footstep planner is “extended” because
extra parameters associated with stance transitions (e.g. step
timing) are computed from the transition itself by a function



learned offline. Here we call this function an oracle because
it predicts the costs that will be obtained by a subsequent
full-body trajectory optimizer.

We now briefly describe the footstep planning algorithm.
We first discretize the search space by constraining contact
positions to a point cloud, and rotations by aligning contact
normals with the environment and constraining the links’
yaw orientation to a discrete set of values in the global
coordinate frame. Then we use an A* variant, ARA* [21],
to search the stance graph based on oracle costs. At each
state (i.e. stance) of the graph s, a contact is either added
or removed to generate successor stances. Contact removal
generates one new stance. On the other hand, adding a new
contact consists of doing a range search of points in a radius
around the foot in contact. For each of those points, footsteps
are placed at all yaw angles and checked for feasibility. We
implement feasibility as empirical stance distance limits, as
well as foot-foot and COM-environment collision checking
using bounding boxes for the feet and trunk. The feasible
stances are added as successors of s.

To find an optimal path to the goal state, A* search
requires a state transition cost function c(s, s′) and a heuristic
cost-to-go function h(s). Similarly to [1], we define the cost
as

c(s, s′) =min
p

f̂cost(s, s
′, p)

subject to

P (f̂RCOF(s, s′, p) < µ(k)) ≥ η
k = 1, ...,K,

(2)

where k is an index of the contacts of s and s′, µ(k)

is the friction at these contacts, and p are state transition
parameters. Since in this paper we use two full-body posture
waypoints per stance at the trajectory optimization level
(Section IV), we set transition parameters p = (∆t,∆t′).
These are the time spent from the second waypoint of s
until the first waypoint of s′, and the time spent from the
first waypoint of s′ to the second, respectively. The main
difference in (2) with respect to [1] is that we consider
uncertainty in the coefficient of friction variable by using
chance constraints. RCOF stands for required coefficient
of friction and corresponds to the maximum tangential-to-
normal force ratio exerted over the whole trajectory [1].
Therefore, the constraints P (f̂RCOF(s, s′, p) < µ(k)) ≥ η
in (2) implement robust Coulomb friction at each contact by
forcing the inequalities to hold with at least probability η.
The constraints can also be rewritten using the cumulative
distribution function of (1) denoted by Fµ(k)|θ,I ,

Fµ(k)|θ,I(f̂RCOF(s, s′, p)) ≤ 1− η. (3)

Since each µ(k) is one-dimensional then F can be inverted
and the constraints rewritten in deterministic form

f̂RCOF(s, s′, p) ≤ Q(k)
1−η, (4)

where Q(k)
1−η is the (1 − η)-quantile of Fµ(k)|θ,I , which can

be computed by an integral of (1) over µ.

Regarding the heuristic cost-to-go function of A* search,
as in [1], we set it to

h(s) =dxy(s, sgoal).min
s,s′,p

f̂cost(s, s
′, p)

dxy(s, s′)
, (5)

where the function dxy(., .) computes Euclidean distance on
the horizontal plane between two stances (i.e. the distance
between left feet and right feet summed). The heuristic (5) is
a lower bound on the cost-of-transport times distance, which
guarantees that h(s) does not overestimate the total cost to
the final stance sgoal (i.e. is admissible, a necessary condition
for A* optimality).

In this paper, the functions f̂cost and f̂RCOF are given
by an oracle which predicts the value of fcost and fRCOF

obtained at the end of the whole planning pipeline. Notice
that in this paper, contrary to [1], fcost is the function that
will be optimized at the full-body trajectory optimization
level. We implement f̂cost and f̂RCOF as hash tables. The
tables are filled offline, by feeding the whole planning
pipeline (i.e. trajectory optimization, interpolation, dynamic
stabilization) with uniformly distributed samples of (s, s′, p)
as shown in Figure 1. The discrete optimization problems
in (2), (5) are then solved for a large number of discretized
stances and coefficient of friction quantiles and stored in
new hash tables for fast access to costs and heuristics during
search.

B. Full-body trajectory optimization

The full-body trajectory optimizer takes a footstep plan
with N stances and produces a full-body trajectory, param-
eterized by T discrete-time waypoints. Waypoints are full-
body robot configurations qt ∈ RD, t = 1, ..., T , where D is
the number of degrees-of-freedom consisting of the joints’
angle values and the pose of the robot base. Each stance is
associated with 2 full-body postures (at start and midstance)
and so T = 2N . For convenience we use st to refer to the
stance associated to qt.

Our optimizer solves the problem

minimize
q1,...,qT

fcost(q1, ..., qT ) + αfcollision(q1, ..., qT ) (6a)

subject to
fstance(qt, st) = 0 ∀t∈1,...,T (6b)
fxy(qt) ∈ Pt ∀t∈1,...,T (6c)
froll(qt) = 0 ∀t∈1,...,T (6d)
Atqt ≤ bt ∀t∈1,...,T , (6e)

where q1, ..., qT are the optimization variables, α is a penalty
constant and:
• The function fcost computes the sum of the squared

static torques of all joints at all waypoints, as imple-
mented in the trajopt library [22]

• The function fcollision is a collision cost as proposed by
[22]. It is the sum of a discrete collision cost computed
by the signed distance between each link and all other
geometries, and a continuous collision cost computed



by the signed distance between the swept volume of
each link with the environment

• The function fstance(qt, st) computes the pose error of
all links in contact as a 6C-dimensional vector where C
is the number of active contacts in st. This is computed
as the translation and axis-angle error between the target
link pose (given by st) and the current link pose (given
by qt)

• The function fxy(qt) computes the (x,y) coordinates of
the COM, and Pt is the support polygon of st. The
constraint thus enforces approximate static stability. The
support polygon of st is computed by the convex hull
of the horizontal projection of links in contact and does
not include contacts removed in st+1

• The function froll(qt) computes the rotation around
the X axis for the waist link, with respect to the
global reference frame. This constraint is necessary as
“zero roll” is an assumption of the subsequent dynamic
stabilization method (Section IV-C)

• At, bt enforce joint angle and velocity limits.
We solve problem (6) using the Sequential Quadratic

Programming method of [22] as implemented in the trajopt
library1.

C. Interpolation and stabilization

To obtain a densely-sampled trajectory for execution on
the robot, we interpolate trajectory waypoints using Hermite
cubic splines with derivatives set to zero for smooth contact
transitions. The time between two consecutive waypoints qt
is given by the oracle, as we describe in Section IV-A.

Since the obtained trajectory is not dynamically stable,
we then apply an FFT-based ZMP trajectory compensation
scheme [23]. The method considers the rigid-body dynam-
ics of the full body and locally adapts COM motion on
the horizontal plane using analytic inverse kinematics to
iteratively reduce the error between the real and reference
ZMP trajectory. We set the reference ZMP trajectory to the
interpolated fxy(qt), which were used in the optimization
problem (6) and are inside the support polygon at each
waypoint. Furthermore, our implementation of the analytic
inverse kinematics of the robot WABIAN-2 assumes zero roll
angle of the waist link with respect to the world reference
frame. We include this constraint in the optimization problem
(6) for consistency.

V. RESULTS

A. Material segmentation results

To train the CNN we first collected 7,791 annotated im-
ages from publicly available semantic-segmentation datasets:
5,216 from the VOC2010 Context dataset [13] and 2,575
from the OpenSurfaces dataset [12]. We selected all images
in the datasets with at least one of the following labels:
asphalt, concrete, road, grass, rock, sand, sky, snow, water,
carpet, rug, mat, ceramic, tile, cloth, fabric, marble, metal,
paper, tissue, cardboard, wood. Due to similarity between

1URL: http://rll.berkeley.edu/trajopt

some classes at the image and semantic level we joined the
labels (asphalt, concrete, road), (carpet, rug, mat), (ceramic,
tile), (cloth, fabric) and (paper, tissue, cardboard). The total
number of considered classes in the output CNN layer was
14. Sky was only included to avoid classifying it as any of
the other materials on outdoor pictures.

We used stochastic gradient descent with 0.1 learning rate
and 0.9 momentum as in the original SegNet publication
[18], and trained the network on an Amazon Elastic Cloud
node with a 4GB NVIDIA GPU. We ran a total of 90,000
iterations with a mini-batch size of 5 (maximum allowed by
the GPU). Training was done on 60% of the images, while
the other 40% were used as the test set.

We obtained a global classification accuracy of 0.7929 and
class-average accuracy of 0.4776 on the test set. See Figure 2
for examples of the (highest probability) material predictions
given by the CNN on the test set. The global accuracy
is comparable to state-of-the-art performance in semantic
segmentation (e.g. [18], [24]), and the class-average accuracy
is slightly below state-of-the-art (which is around 0.60 [18]).
We believe one important way to improve classification
accuracy is to improve the dataset itself since, for instance,
there is moderate visual similarity between some of the
materials such as marble and ceramic, and some materials are
lowly sampled (e.g. the lowest sampled materials are snow
and sand, present in 173 and 46 images respectively).

The material segmentation results in Figure 2 show an
overall good accuracy of the CNN, particularly on wood,
grass and sky labels. The figure also shows typical mis-
classifications such as white walls recognized as sky or
metal (picture 6), hard snow as rock (picture 7), and some
overlap between asphalt/road, ceramic and marble. These
are arguably understandable since material labels themselves
semantically overlap. However, our approach to the visual
friction estimation problem is such that if there is uncertainty
in the material label, then this uncertainty can be used
to weight the friction of the surface through material and
friction probability distributions (Section III).

B. Friction prediction results

We empirically measured the coefficient of friction asso-
ciated with each material label using a force gauge and the
robot foot loaded with a 1.5kg mass. The foot is rigid and its
sole is covered with a high stiffness soft material for shock
absorption and an anti-slippage sheet. We checked whether
surfaces were horizontal with a level, then placed the foot
and measured maximum friction force with the force gauge.
See Figure 3 for an illustration of the procedure. We took 5
friction measurements on each surface, and used at least 3
surfaces of each material. We fitted a normal distribution to
the measurements, obtaining separate parameters µi and σ2

i

for each material, where µi is the mean friction of material i,
and σ2

i the variance. The materials sand, snow, water, cloth,
paper were an exception, and since our robot is currently
not capable of walking on them (i.e. fall or damage risk
is too high) we directly set them to µi = 0, σ2

i = 0. We
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Fig. 2. Example images from the test set, respective material segmentation (highest probability labels) and coefficient of friction quantiles Q1−0.95 of
equation (1). Darker shades of gray correspond to higher friction, such that white is µ = 0 and black µ = 1.

Fig. 3. We estimate the coefficient of friction of a material by several
measurements of the maximum friction force on the robot foot, loaded with
a 1.5kg mass.

similarly set sky’s friction to zero as well. See Table I for
the parameters of the friction p.d.f. of each material.

In Figure 2 we show the test-set’s highest probability
material predictions along with the (1 − η)-quantile of the

TABLE I
NORMAL DISTRIBUTION PARAMETERS OF EACH MATERIAL’S

COEFFICIENT OF FRICTION, MEASURED MANUALLY ON THE ROBOT FOOT

Material µi σi

Asphalt 0.74 0.12
Grass 0.53 0.10
Rock 0.80 0.08

Carpet 0.82 0.02
Ceramic 0.97 0.05
Marble 0.83 0.15
Metal 0.80 0.15
Wood 0.88 0.12

Sand, Sky, Snow, Water, Cloth, Paper* 0 0

Note: materials marked with a * are assumed to be untraversable by our
robot and so set to zero without measurements.
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Fig. 4. Left: the view from the robot’s camera of the mock-up scenario built
in the laboratory. The locomotion target is one meter ahead, marked with
a white “x”. Middle: material segmentation. Right: coefficient of friction
quantiles Q1−0.95 of equation (1). Darker shades of gray correspond to
higher friction, such that white is µ = 0 and black µ = 1.

coefficient of friction which is used in equation (4). We set
a typical value of η = 0.95. The friction images are darker
where friction is higher (µ = 1 would be black). Note that
ceramic-like surfaces have high predicted friction (pictures 1,
5, 6); beds and jackets have very low friction (pictures 3, 4,
14); grass patches have lower friction than roads (pictures 2,
9, 11, 12, 13); and that water is mostly white - zero friction
- (pictures 10, 12).

The figure also shows the advantage of using the whole
probability distribution of materials (instead of using the
highest probability material) to estimate friction. For example
in picture 14, the jacket on the ground is classified as cloth
and rock depending on the region, but friction is low on
most of the object’s area since the cloth label still has high
probability.

C. Planning results

We prepared a mock-up scenario in the laboratory which
demonstrates the capabilities of our planner. The scenario
consists of a floor with two areas of different materials. One
is made of wood (µ = 0.84) and the other is a high-friction
flooring resembling ceramic tiles both in appearance and
coefficient of friction (µ = 1.00). The perception-planning
algorithms were run on this scenario, and then a piece of
cloth (T-shirt) was laid flat on one of the surfaces to provoke
changes in friction and force a different plan. See Figure 4
for the scenario, segmentation and friction as seen from the
robot’s camera at the initial condition. Once again, the figures
show the advantage of using the full probability distribution
of materials given by the CNN. While cloth is the highest-
ranking material only in part of the object region, friction is
low on a larger region which is highly consistent with object
borders.

The robot starts in double-support, with one foot on each
surface. The goal stance is one meter ahead, also with a
foot on each surface. After the robot is placed at the initial
state, the perception and planning algorithms run without
any human input except the push of a button to execute
the planned full-body trajectory open-loop. Trajectory op-

timization parameters are the collision penalty weight α of
equation (6), which is set to 50, and the distance at which
the collision penalty starts being applied (for all links except
those in contact), which we set to 2.5cm. The obtained full-
body trajectory is tracked by position control at the joint
level.

For these experiments we used the human-sized humanoid
robot WABIAN-2 [25] customized with a Carnegie Robotics
Multisense SL sensor-head. The perception pipeline pre-
dicts pixel-wise material label distributions and pixel-wise
friction using SegNet [18] and equation (1), and combines
them with the stereo depth maps computed onboard by the
Multisense. It produces friction-annotated point clouds at
2Hz. For collision checking, the point cloud is converted
into a mesh using the fast surface reconstruction algorithm
of [26] as implemented in PCL [27]. All perception and
planning computation ran on an external PC with network
connection to the robot’s onboard PC, and we used ROS [28]
for communication.

We show the results of the perception-planning experi-
ments in Figure 5. From left to right, we show the material
and friction point clouds, the footstep plan, the collision-
checking bounding boxes used by the footstep planner and
the final planned full-body trajectory after optimization and
stabilization. In the first situation there are only wood and
ceramic surfaces, but the predicted lower bound of friction of
the wood surface is lower than that of the tiles (Q1−0.95 =0.1
vs 0.4). The footstep planner returns a sequence of stances
that reduces the amount of times wood is stepped on.
This behavior comes naturally from the extended footstep
planning approach [1], since walking on low friction ground
requires higher stance times (slower motion) and thus more
energy cost. Furthermore, note that the trajectory optimiza-
tion uses all degrees-of-freedom to satisfy the constraints
(e.g. trunk roll use is clear in the image sequence, important
mainly for the stability constraints), and that the knees are
relatively stretched in order to reduce torque consumption
but still satisfy stability constraints. Also note that swing leg
clearance happens automatically due to the use of collision
costs.

In the second situation we laid a flat piece of cloth on a
ceramic spot used by the previous trajectory. The cloth was
correctly classified and its friction was practically zero. The
footstep planner returned a trajectory around the cloth and
on the wood surface, which led to a slightly longer time and
energy cost of the full-body trajectory (63 vs 60 seconds, 5%
longer than on the first situation). Note that while the times
are long they correspond to 25 stances because of step length
limits, and thus the average time per stance is approximately
2.5 seconds.

Footstep planning took approximately 20 seconds in the
first situation and 10 in the second. The reason for the
difference is clear from the scenario: while in the first
situation stances on both surfaces are expanded by A* in
order to guarantee optimality, in the second situation no
stances are expanded on the surface with cloth since fric-
tion zero has infinite cost. Full-body trajectory optimization



Fig. 5. Perception and planning experiments with two surfaces (wood and ceramic) on the first two rows and three surfaces (wood, ceramic and cloth) on
the last two rows. We show the material segmentation (same colour codes as in Figure 4), friction (cold colours are high friction, warm are low), footstep
plan, collision bounding boxes, full-body plan and finally the walking sequence on the real robot.

took approximately 40 seconds and dynamic stabilization
2 seconds. Note that these are for 25-stance, 60 second
trajectories, and therefore they should be considerably faster
in case planning is done one or two steps at a time.

VI. CONCLUSIONS AND DISCUSSION

In this paper we proposed a complete solution to the
problem of biped robot locomotion on slippery terrain. We
developed both a visual friction estimation algorithm and
an objective-consistent hierarchical planning method which
considers trajectory costs, collision, stability and friction.

We empirically showed that friction estimates in our algo-
rithm are more consistent with object/material borders than
the highest-probability material label segmentation, which
shows a good integration of segmentation uncertainty into
friction estimation. We also showed that the algorithms work
for varied terrain and are applicable to planning on a real
robot. The algorithms are relevant since not only obstacles
but also different terrain types abound in the real world, and
locomotion choices should take them into account - whether
for safety or energetic considerations.

Regarding the perception problem, we opted to decouple
it into (broad sense) material segmentation and per-material
friction distributions. Even though we obtained the material
friction distributions manually, these could also be learned
over time with locomotion experience. Alternatively, friction
could also be learned from images directly by end-to-end
training, for example by initialization of a CNN with the
parameters obtained with our architecture.

For the context of this paper all surfaces were dry. Wet
surfaces could also be included, although from our experi-
ence they should be treated as separate material labels (e.g.

“dry metal” and “wet metal”) so that the distribution µ|li
does not become bimodal. Thus, one important detail in this
work is the notion of material, which should be taken in a
broad sense, as a visually distinguishable terrain class.

Importantly, one problem with the proposed perception
and planning approach is that wrong material classifications
can lead to there being no solution to the footstep planning
problem. An example of such a situation is when a material
the robot cannot walk on, such as water in our case, is
mistakenly given very high confidence. Our view is that the
solution could be semi-supervision where a teleoperator can
correct a segmented region’s material label. However, we
believe that humans should not directly annotate COF, since
despite their relative ability to adapt gait to slippery ground
humans have difficulties in estimating coefficient of friction
values [6], [10].

Finally, full-body trajectories in this paper were interpo-
lated after trajectory optimization at waypoints. While we
did this for implementation simplicity, one possible direction
of improvement could be to use the spline representation
directly in the optimization problem, using constraints at
collocation points.
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haviors through contact-invariant optimization,” ACM Trans. Graph.,
vol. 31, no. 4, pp. 43:1–43:8, July 2012.

[16] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 14th IEEE-RAS International
Conference on Humanoid Robots, Nov 2014, pp. 279–286.

[17] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for
humanoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5,
pp. 428 – 442, 2013.

[18] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
arXiv preprint arXiv:1511.00561, 2015.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[20] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume
approximations,” IEEE Transactions on Robotics, vol. 28, no. 2, pp.
427–439, April 2012.

[21] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a*
with provable bounds on sub-optimality,” in Advances in Neural
Information Processing Systems, 2003, pp. 767–774.

[22] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[23] K. Hashimoto, H. Kondo, H.-O. Lim, and A. Takanishi, Motion and
Operation Planning of Robotic Systems: Background and Practical
Approaches. Springer International Publishing, 2015, ch. Online
Walking Pattern Generation Using FFT for Humanoid Robots, pp.
417–438.

[24] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “Material recognition
in the wild with the materials in context database,” Computer Vision
and Pattern Recognition (CVPR), 2015.

[25] Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima,
H. Lim, and A. Takanishi, “Development of a new humanoid robot
wabian-2,” in 2006 IEEE/RSJ International Conference on Robotics
and Automation. IEEE-RAS, 2006.

[26] D. Holz and S. Behnke, Fast Range Image Segmentation and Smooth-
ing Using Approximate Surface Reconstruction and Region Growing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 61–73.

[27] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in 2011 IEEE International Conference on Robotics and Automation,
Shanghai, China, May 9-13 2011.

[28] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.


