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Abstract—Energy efficiency and robustness of locomotion to different
terrain conditions are important problems for humanoid robots deployed
in the real world. In this paper we propose a footstep planning algorithm
for humanoids applicable to flat, slanted and slippery terrain which
uses simple principles and representations gathered from human gait
literature. The planner optimizes a center-of-mass (COM) mechanical
work model subject to motion feasibility and ground friction constraints
using a hybrid A* search and optimization approach. Footstep placements
and orientations are discrete states searched with an A* algorithm, while
other relevant parameters are computed through continuous optimization
on state transitions. These parameters are also inspired by human gait
literature and include footstep timing (double support and swing time)
and parameterized COM motion using knee flexion angle keypoints.
The planner relies on work, required coefficient of friction (RCOF) and
feasibility models that we estimate in physics simulation.

We show through simulation experiments that the proposed planner
leads to both low electrical energy consumption and human-like motion
on a variety of scenarios. Using the planner, the robot automatically opts
between avoiding or (slowly) traversing slippery patches depending on
their size and friction; and it chooses energy-optimal stairs and climbing
angles in slopes. The obtained motion is also consistent with observations
found in human gait literature, such as human-like changes in RCOF,
step length and double support time on slippery terrain, and human-
like curved walking on steep slopes. Finally, we compare COM work
minimization with other choices of objective function.

Index Terms—Biologically-Inspired Robots, Humanoid Robots, Motion
planning, Footstep planning, Path planning, Human gait

I. INTRODUCTION

HUMANOID robot locomotion planning is an important problem
with applications in disaster response and service. Footstep

planning algorithms are a computationally attractive solution to the
locomotion problem since they reduce the search space from whole-
body motion to footstep positions and orientations. Current footstep
planners excel at obstacle avoidance, but do not consider important
factors such as ground friction and energy consumption. These are
especially important in outdoor environments where the robot will
depend on batteries and surface conditions might be challenging:
slippery, inclined, etc. While it is still not clear how footstep planners
should be formulated in order to consider many of such factors, our
claim in this paper is that using principles and representations in
human gait literature can lead to natural improvements of footstep
planning. Namely, in this paper we integrate human-inspired COM
work and RCOF models as functions of footstep displacement,
timing and parameterized COM motion, into a new hybrid search-
optimization planner: obtaining friction-aware low-electrical-power
footstep plans.
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The contributions of this paper are the following: 1) We give an
overview of anticipatory human gait literature, and identify principles
and representations useful to humanoid locomotion in a variety
of scenarios; 2) We propose a footstep planning algorithm based
on 1 which plans both footstep positions, orientations, timing and
parameterized COM motion; 3) We show that the proposed method
applied to the WABIAN-2 robot leads to walking motion observations
consistent to those seen in human gait literature; and 4) We show that
paths obtained with the proposed planner also lead to low electrical
energy consumption.

This paper is related to two previous publications [1], [2]. Com-
pared to these we: 1) Further extend the models and planner to
account for locomotion on slopes; 2) Give an overview of anticipatory
human gait literature relevant to footstep planning, explaining the
motivations behind our choice of optimization objectives, constraints
and variables; 3) Claim human-likeness of the motion obtained with
our planner by comparing it with observations in human gait.

II. RELATED WORK

A. Humanoid footstep planning

In humanoid walking, as in human gait literature, it is common to
distinguish two levels of locomotion control: planning and feedback
control. In this paper we focus on the (footstep) planning problem
for humanoids. This problem is closely related to the study of
anticipatory human gait adaptations. For example, representations of
walking used in human gait literature to describe anticipatory gait
control are closely related to those used in high-level motion planning
algorithms in robotics, such as footstep planning, contact planning
and other task-space planning approaches. Both typically deal with
observations in terms of a high-level representation of walking such
as modality, foot position, orientation, timing, limb stiffness or center-
of-mass (COM) height.

For humanoids, the footstep and contact planning problems have
been tackled with search [3], [4], [5], [6], [7], sampling [8] and
optimization [9], [10] algorithms. Search-based planners such as A*
[3], [4], [5] and its variants [6], [7] have been used successfully
to plan obstacle free paths in both static and dynamic [5] scenarios.
Recently, purely optimization-based planners have also been proposed
[10], which eliminate the sub-optimal discretization problem inherent
to search-based planners. Sampling-based [8] planners allowing for
multiple contacts (e.g. hands, knees) are useful for very complex
environments, although at a high computational cost, which can be
slightly ameliorated with a good selection and adaptation of motion
primitives [11]. While the aforementioned planners focus on finding
collision-free paths, the methods in this paper go one step further:
considering energy, collision and friction.

One important step in footstep planners is to estimate whether
a given stance or step is feasible or not. Some authors opt to
approximate feasibility by rough reachability of the feet [7], full
inverse kinematics feasibility [8], or smart collision checking [12]. In
this paper we use both rough reachability intervals to discard obvious
unfeasible poses, as in [7], but also learn a model of feasibility from
physics simulation: where feasibility is both static and dynamic.

Research closely related to this paper includes [3], in which terrain
and energy-related cost functions are used in A* search to compute
optimal cost plans. They sum a set of empirical human biomechanics-
inspired models of energy cost that are polynomial functions of step
length, width and rotation. Also [4] uses a similar approach, with
quadratic cost functions on sequences of footstep positions. On the
other hand, in this paper we consider also timing variables and surface
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friction. We do not assume polynomial relationships and instead use
an off-the-shelf machine learning algorithm to learn the relationship
between variables from data. And finally we make claims concerning
energy consumption and human-like motion.

In this paper we prevent slippage of the robot by planning,
which complements other feedback control approaches to friction-
constrained biped walking [13], [14], [15]. While feedback control
can help reduce tangential-to-normal force ratios locally, it may not
be sufficient in very low friction surfaces. For example a robot with
rubber soles would be subjected to less than 0.15 kinetic friction
when walking on ice. Slipping can be reduced in such low friction
floors without changing gait, but not eliminated [13]. Feedback
control approaches usually consist of friction cone constraints in
inverse dynamics [16] or operational space control framework [15].
Design parameters in the preview controller [17] can also be slightly
tuned to reduce the RCOF for a fixed gait, and feedback ZMP
controllers manually adapted to account for friction [13]. Efforts have
also been put into reactive reflex controllers that, without changing
gait parameters, try to reduce slipping after it is detected (e.g.
by waist or foot acceleration reflexes [14]). In this paper we take
the complementary high-level approach, by optimizing energy and
eliminating slippage as much as possible by changes in gait. Such
approach solves the known problem of reactive controllers to not
be able to avoid slipping on fast gait [14], and at the same time
leverages on human gait literature findings supporting energy and
stability optimization at the footstep level, which is not just reactively
but also anticipatorily controlled.

B. Anticipatory gait control in humans: human gait is planned

The claim that humans also plan gait, and footsteps in particular, is
supported by several evidence in both children and adults. For exam-
ple, children walkers (average 14 months) switch walking modality
from bipedal to quadrupedal on a waterbed after visual inspection
of its waviness or haptic exploration [18]. Children also use haptic
exploration on slopes to decide whether to walk, crawl, slide down
in sitting or backing positions or not traverse them at all [19].

Across numerous studies of adult human walking there is also the
observation of a ”cautious gait” style used in uncertain environments
[20], [21], [22] or after sensory loss [23], [24]. For example [20],
[21], [22] observed a specific cautious gait mode when there is
awareness of a slippery surface, which is then adapted to the specific
slipperiness condition found. Typically on slippery surfaces, walking
speed is decreased, the COM is centered over the supporting limb
and limb stiffness is increased [20], [21], [22]. Even when there
is no knowledge of the degree of slipperiness, stride length [20],
[21], [25], foot contact angle [26], [22], [27], [25] and vertical heel
contact velocity [26] decrease, while knee flexion increases [22],
[27]. According to [22], these surface-approach changes are learned
over prior slip experience and are applied to different conditions
when surface properties are unknown. Further knowledge of the
coefficient of friction changes muscle activation and how the foot
interacts with the floor. On slippery terrain, both these gait and muscle
activation patterns become characteristically different since the first
step on the surface, which indicates an anticipation strategy and not
reactive adaptation of normal gait. A cautious gait is also used in
other uncertain circumstances such as when vision is blurred by light
scattering lenses [23]. Another interesting observation is that human
walking trajectories on steep slopes such as mountains or hills are not
straight least-distance paths but more energy-efficient curved paths
uphill [28], [29]. Interestingly, [30] showed that visual perception
of slant changes from viewpoint (downhill looks steeper and is also
more difficult), which suggests that climbing gradients could be a
result of perception of slant.

All these examples show how humans adapt high-level gait pa-
rameters such as modality, footstep position and timing or COM
trajectories by some sort of motion planning based on visual or haptic
perception of the environment.

Part of these observations have been obtained in robotics and
animation literature by optimization algorithms, for example lower
step lengths [1], [31] and lower COM [31] on slippery terrain. [31]
achieved this by a low-level joint controller, while [1] used a footstep
planning algorithm. The latter, planner-based approach is more easily
adaptable to complex terrain with obstacles and slopes. In this paper
we extend its methods further, obtaining several human-like walking
behavior observations both in slippery terrain and slopes.

C. Human gait as optimization in high-level representation: variables
and objectives

The optimal gait of humans, according to [28], is related to fitness
of the species and is a function of several factors such as speed,
acceleration, endurance, energy and stability. Human gait studies have
shown that these can be modeled by simple principles and using
equally simple high-level representations of gait. For example, step
length and cadence have been shown to have a linear relationship
[32]. Also, simple empirical equations of step length and step rate
proposed by [33] lead to contours of energy consumption per meter
which match subject data from different studies. In particular, the
metabolic ”cost of transport” (energy per unit distance) is a frequent
optimization objective studied in human gait literature. Humans have
been shown to choose an average step length and frequency that
minimizes average energy cost per distance [33], [34], [35], [36].
Minimization of vertical cost of transport, mainly by regulation of
COM height, also explains locomotion patterns on steep slopes as
shown by [29]. Studies usually model energy as oxygen consumption
[33], joint or muscular work [37] and body or COM work [38].
Energy recovery [39] of the COM is also another considered objective
related to COM work.

The previously stated measurements have been shown to vary
systematically with high-level gait parameterizations such as step
length [40], [19], [21], [20], [25], step width [25], speed [40], [20],
[27], COM height [20], knee flexion at heel strike [22], foot angle and
velocity at heel strike [21], [26], [41], [25], double support and swing
times [32], [41], [27], and limb stiffness [20]. The same variables have
also been shown to be used, whether directly or indirectly, to regulate
the Required Coefficient of Friction (RCOF): the ratio of shear to
normal ground reaction force (i.e. tangential to normal force) [22],
[21], [20]. The RCOF constraint should be kept below the ground’s
coefficient of friction to avoid slips and consequent falls, but it is
planned and not just controlled reactively [20].

Travel time, acceleration and orientation error are also other
functions which can be optimized to predict COM trajectories in
flat goal-directed paths indoors [42].

III. OUR HUMANOID FOOTSTEP PLANNING MODEL

From the anticipatory gait control studies mentioned in the previous
section we selected simple optimization objectives and variables such
that: 1) They are easily applicable to current humanoid locomotion
planning algorithms, namely footstep planning; 2) They predict
walking behavior observations in different human gait literature for
a variety of scenarios. In particular we focus on observations on
slippery environments, flat and slanted terrain.

Based on these criteria we selected the following optimization
variables: Step length, width and height. As discussed in Section
II-C, both energy and RCOF have been shown to vary systematically
with these variables. Also, their application to robot footstep planning
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is straight-forward since these are simple distances between feet.
Double support time and leg swing time. As discussed, these
vary systematically in adaptations to slippery terrain. Inclusion in
(extended) footstep planning adds flexibility to the planner to lower
gait accelerations and may thus allow the robot to navigate more
slippery terrain, as initially proposed in [1]. Knee flexion angles.
These also vary systematically in adaptations to slippery terrain
[22]. Furthermore, they are related to COM height which explains
adaptations in steep slopes and slippery terrain. For robot locomotion,
planning COM trajectories is also crucial for stability and feasibil-
ity considerations. In this paper we parameterize the COM height
trajectory through inflexion points of a knee angle trajectory spline.

Regarding optimization objectives and constraints, we define them
and learn them in simulation as functions of the previously stated
variables. The models we borrow from human gait literature are:
COM work as optimization objective. As discussed in Section II-C,
energy optimization and in particular COM work explains walking
patterns in both flat and sloped terrain [35], [29]. The advantage of
this model for robotics when compared to, for example, electrical
energy or torque minimization is basically its simplicity. Since only
COM velocity and force profiles are required to estimate COM work,
it applies to both complex robot models and simple single-mass robot
models. There is also the motivation of passive dynamic walkers [43]
which optimize COM work by construction. RCOF as a constraint.
As discussed, RCOF has been shown to vary on slippery terrain.
While it is not clear whether RCOF should be used as a hard or soft
constraint in order to explain human data, in this paper we opt for a
hard constraint. We assume Coulomb friction and set RCOF< µ as a
constraint in the problem, which is advantageous from a conservative
perspective: in order to theoretically avoid slipping and thus not
having to rely heavily on reactive slippage control.

As we will show in the Section VI, our footstep planning model
leads to the following human-gait-predicted behavior:

• Energy contours are hyperbolic in step length-rate [33], [35],
• RCOF is reduced on slippery terrain [21],
• Step length is reduced on slippery terrain [20], [21], [25],
• Double support time is increased on slippery terrain [27],
• There is an optimal climbing angle for steep slopes [28], [29].

In other words long steep trajectories will be curved.

A. Problem statement

We consider the problem of finding a sequence of N footsteps
fj = (xj , yj , zj , θj) ∈ R4, j = 1, ..., N , such that energy is
minimized and with feasibility and no-slippage as constraints. The
plan starts at a fixed initial stance s1 = (f1, f2) and finishes at a fixed
goal stance sN−1 = (fN−1, fN ). N is unknown; (xj , yj , zj) and θj
are position and yaw orientation of a foot in a global coordinate
frame; for convenience fj is a left foot if j is odd, right if j is even.
The energetic cost ECOM of transitioning from a stance sj−1 to sj
depends on both the stances and some extra parameters pj ∈ RP .
p represents state transition parameters that might provide different
ways for sj to be reached from sj−1, such as step timing and COM
motion. In this paper we use pj = (∆tds,∆tsw, φ0, φst, φsw) ∈ R5

which are double-support time (i.e. time spent on sj−1), swing time
(i.e. time spent with the swing leg in the air), and minimum knee
flexion, maximum stance knee flexion and maximum swing knee
flexion angles. Throughout the paper we will also refer to a state
(i.e. stance) transition by a ”step”.

The general problem we are trying to solve in this paper is

minimize
N,f3..fN−2,p2..pN−1

∑
j=2...N−1

ECOM(fj−1, fj , fj+1, pj)

subject to

RCOF(fj−1, fj , fj+1, pj) < min(µj−1, µj , µj+1)

Ψ(fj−1, fj , fj+1, pj) < 0

a < pj < b

(1)

where the function Ψ implements feasibility constraints on the stances
and steps due to kinematic, dynamic or controller limitations. We
assume coefficient of friction µj is known for each fj , and a Coulomb
friction model so that RCOF is a tangential-to-normal force ratio.
Bound constraints on the step parameters are implemented with
vectors a and b.

IV. OBTAINING ENERGY, RCOF AND FEASIBILITY MODELS

A. Definitions

We compute total COM mechanical work as:

ECOM =

∫ t1

t0

|v.F|dt, (2)

where v and F are the velocity and total force vectors at the COM,
respectively, and t0, t1 the beginning and ending time of a step (i.e.
t1 − t0 = ∆tds + ∆tsw).

RCOF [21] is defined as the maximum ratio of tangential-to-normal
force applied at the feet during a given step:

RCOF = max
t∈[t0;t1]

∣∣∣∣FT(t)

FN(t)

∣∣∣∣ (3)

where FT is the tangential force and FN normal force at the feet. In
this paper we assume a Coulomb friction model. Therefore, note that
if RCOF is lower than the actual coefficient of friction between feet
and floor, slippage is theoretically prevented during that step.

Finally we define the feasibility model as Ψ ∈ {−1, 1} and use
value 1 for unfeasible points and −1 for feasible. To discard obvious
unfeasible stances we first use a footstep parameterization as in [7] to
obtain a heuristic approximation of footstep reachability: in a stance
sj , reachability is approximated by a set of intervals for the variables
(∆xj+1,∆yj+1,∆zj+1,∆θj+1), which are distances from the first
footstep to the second, i.e., ∆xj+1 = xj+1−xj , etc. Stances outside
these intervals are considered unfeasible with Ψ = 1. Steps are also
considered unfeasible if COM motion respecting the reference ZMP
trajectory cannot be found using our Walking Pattern Generator [44],
joint limits are reached or the robot falls during physics simulation.

B. Implementation

During a training stage we run physics simulations exploring the
space of steps (fj−1, fj , fj+1, pj) and collecting measurements of
ECOM, RCOF and Ψ. Each simulation consists of a symmetric and
periodic gait of steps with constant step length, width, height and p.
The patterns also start and finish with zero COM velocity and are
stabilized with the Pattern Generator described in [44]. We train an
Infinite Mixture of Linear Experts (IMLE) [45] for each model as a
function f̂ : R3+P → R where inputs are the variables mentioned
previously (i.e. step length, width, height and p) and outputs are the
measurements ECOM, RCOF and Ψ. Since the simulations consist of
symmetric periodic gait, step lengths (usually defined as the distance
between two consecutive feet at heel strike [22]) are the same as
stance lengths, and likewise for width and height.

We chose to use IMLE for function approximation due to its high
query speed and low number of experts, while still allowing for online
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learning if necessary. Error performance is comparable to that of
Gaussian Processes [45]. Models were trained by uniform sampling
of the input space and using the necessary number of experts to obtain
a standardized mean squared error (SMSE) lower than 0.1.

In the case of the feasibility function, we still fit a continuous
mixture model even though training points are discrete Ψ ∈ {−1, 1},
leading to interpolation regions between −1 and 1. While planning,
we enforce a slightly conservative feasibility constraint of Ψ < 0 to
avoid uncertain regions far from feasibility (Ψ = −1).

V. SOLVING THE PLANNING PROBLEM

A. Discretized search of footsteps, continuous optimization of step
parameters

In this paper we solve (1) by a hybrid discrete search and
continuous optimization-based planner. We first constrain the footstep
(position) space to a point cloud of traversable points (x, y, z) ∈ R3

and a discrete set of orientations in the global coordinate frame:
θ ∈ {0◦, 360

D

◦
, ..., 360(D−1)

D

◦
}, where D is the number of uniform

footstep directions. Then we compute the optimal-cost path from
the initial to goal stance on this space using Anytime Repairing
A* (ARA*) [46]. ARA* requires a state transition cost function
c(sj−1, sj), and a heuristic cost-to-go function h(sj). It will find
the optimal path to the goal given enough computation time and an
admissible h. If interrupted anytime, then the algorithm still returns
a sub-optimal path with provable bounds. Please refer to [46] for
further details.

In our case the state transition cost c(sj−1, sj) is the minimum-
energy transition between the two consecutive stances sj−1 =
(fj−1, fj) and sj = (fj , fj+1), given by:

c(sj−1, sj) = min
pj

ECOM(fj−1, fj , fj+1, pj)

subject to:

RCOF(fj−1, fj , fj+1, pj) < min(µj−1, µj , µj+1)

Ψ(fj−1, fj , fj+1, pj) < 0

a < pj < b

(4)

Hence, even though states in A* search are discretized stances, step
parameters are computed from continuous optimization on the state
transitions.

Regarding the heuristic h(sj), we set it equal to a lower bound on
the cost from sj to the goal which assumes no obstacles, optimal cost
of transport and infinite friction. This way h(sj) never overestimates
the true cost to the goal (i.e. is admissible), as required for A*
optimality. We compute the bound as the minimum horizontal cost
of transport times distance:

h(sj) = dxy(sj , sN−1). min
fk,fk+1,pk

ECOM(fk−1, fk, fk+1, pk)

||(x, y)k+1 − (x, y)k−1||
subject to:

Ψ(fk−1, fk, fk+1, pk) < 0

a < pk < b

(5)

where dxy(sj , sN−1) is the Euclidean distance on the horizontal
plane from stance sj to stance sN−1 (i.e. the distance between left
feet and the right feet summed). True costs to goal will actually be
higher than (5) since optimal step parameters might not be feasible
for the whole distance and more costly paths might be necessary due
to kinematics constraints, obstacles, friction or slope.

In practice, we pre-compute and store on a hash table the results of
equation (4) for a large number of footstep displacements and coef-
ficients of friction. Similarly, we only need to solve the optimization

Fig. 1. The WABIAN-2 humanoid robot used in our simulation experiments.
From left to right: real robot, simulated, DOF.

problem in (5) once. Planning a path from an initial stance s1 to a
goal stance sN−1 then consists of a straightforward ARA* (or A*)
search where each time a state transition is considered we:

1) access a hash table to obtain the state transition cost (4)
2) compute the heuristic cost-to-go from the distance to goal and

the pre-computed cost-of-transport using (5).

B. Implementation

We implement point cloud discretization with PCL [47] using 5cm
grid-filtered point clouds. The search for successors of a stance is
done by a range search of points around the fixed foot. Also, the
directions of footsteps were discretized uniformly with D = 24.

We use the official implementation of ARA* [46] in the Search-
Based Planning Library (SBPL) [48]. The optimization problems
(4) (5) are first solved with the global optimization algorithm DI-
RECT [49], which is then refined using the sequential quadratic
programming algorithm SLSQP [50]. Both optimization algorithms
are implemented in the NLOpt library [51]. The functions ECOM,
RCOF and Ψ are each implemented as an infinite mixture of linear
experts (IMLE) as described in Section IV-B.

During ARA* search we use pre-computed versions of (4) for
speed. After the final solution is obtained we further refine the step
parameters p by solving (4) using SLSQP, warm-started by the values
stored on the hash table.

VI. RESULTS

A. Platform and setup

All experiments described in this paper were conducted on a
simulated model of humanoid robot WABIAN-2, shown in Figure
1. WABIAN-2 is a human-size humanoid robot, 1.5m tall, weighting
64kg and with 41 DOFs. Joints are driven by DC-motors with high
gear reduction ratios of around 200. We used Open Dynamics Engine
(ODE) for physics simulation on the V-REP robot simulator [53], at
a 4ms control cycle (ODE computation time step 1ms, global ERP
0.8, all other parameters set to their default values). The robot’s
joints are position controlled using the same gains as the real robot
(proportional gain between 0.7 and 0.8). We used the Walking Pattern
Generator described in [44] which stabilizes the walking motion
based on the robot’s full dynamical model and works for varying
COM height motion. ZMP reference trajectories were placed at the
center of the stance foot during the swing phase and cubic-spline-
interpolated to the other foot during the double support phase. Full
trajectories of the knees were obtained by cubic spline interpolation
between a minimum flexion angle at impact φ0 and maximum flexion
angle at stance φst and swing φsw, as shown in Fig. 2.

The limits of stance reachability were set according to the kine-
matic chain of WABIAN-2 by manual inspection:
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Fig. 2. Knee trajectories used for the robot are interpolated with a cubic
spline between a minimum flexion angle φ0 at impact and maximum angles
at stance φst and swing φsw . Average and standard deviation of human data
is plotted in gray based on [52]. The robot’s curve can be made close to
that of humans by adjusting double support time (moving φ0 to the left in
this example) and stance angle (φst up), however φsw cannot exactly match
human data (φ ≤ 45◦, pink region is unfeasible).

• ∆x ∈ [0; 0.38] meters, where x points forward,
• ∆y ∈ [0.17; 0.30] meters, where y points to the left (symmetric

interval if fj+1 is a right foot),
• ∆z ∈ [−0.15; 0.15] meters, where z points upward,
• ∆θ ∈ [0; 30] degrees, where θ runs counter-clockwise (symmet-

ric interval if fj+1 is a right foot).
The state transition (i.e. step) parameter vector was defined as p =
(∆tds,∆tsw, φ0, φst, φsw) ∈ R5, and sampled within the intervals:
• ∆tds ∈ [0.09; 1.8]; ∆tsw ∈ [0.9; 1.8] seconds,
• φ0 ∈ [1; 21] degrees,
• φst ∈ [5; 45]; φsw ∈ [5; 45] degrees.
Due to the high dimensionality of the models, we had to obtain

thousands of training points from simulations. To reduce training time
we trained two separate versions of each model: one for level, one
for inclined terrain. We used all dimensions except ∆z on the level
terrain version, and an approximate model on inclined terrain. In the
latter, knee trajectories have a narrow feasibility space (collisions,
complex motion) and so we constrained them such as to obtain a
fixed foot-COM height trajectory. With this approximation, models
were learned in around 2 days of simulation. In total we generated
around 12, 600 different walking patterns. Each pattern is a sequence
of 6 symmetric steps of constant step length, width, height and p.
From these simulations we gathered measurements of ECOM, RCOF
and Ψ.

As explained in Section V, we then fitted an IMLE model to the
measurements; solved (4) for a large number of footstep displacement
and µ values; and stored the results on a hash table. In our exper-
iments this hash table had 18, 491 entries. To solve (4) this many
times took approximately 2 hours. When planning, we simply query
the table to obtain state transition costs and step parameters p from
the transitions’ footstep displacement and µ values. Query time is at
the microsecond level.

B. Models of energy and RCOF

Figure 3 shows the ECOM model as a function of step length and
height, for two different slope friction values (µ = 0.2 and 0.4). The
energy at each steplength-stepheight combination also depends on the
other parameters p, and so the minimum ECOM across p is shown at
each point. The gradient of the energy is mainly dominated by the
step height value, indicating high energetic cost for slanted terrain.
The maximum feasible slope angle for each friction value can be seen
by the absence of colored energy values, and is approximately 18◦

for RCOF< 0.2 and 45◦ for RCOF< 0.4. The high energetic cost
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Fig. 3. Minimum ECOM on slopes, as a function of step length and step
height. Measured in physics simulation.

of slanted terrain actually leads to a preference of shallow walking
slopes as we will show in Section VI-C and VI-D. Figure 4 shows
the contours of ECOM for level walking. The figure shows that most
of the energy is spent in double support: the shorter ∆tds the lower
the energy. Leg swing time mostly does not influence COM energy,
which reflects the fact that the alignment of velocity and force are
low when compared to double support (motion on the sagittal plane
is close to an inverted pendulum).

We show the RCOF model in Figure 5. RCOF is mainly dependent
on the time spent in double support (contours are vertical in the
right-most ∆tds, ∆tsw plot). The higher ∆tds is, the lower the
RCOF. Also, the lower the step length, the lower the RCOF. Our
interpretation is that both increasing ∆tds and decreasing step length
lead to lower COM accelerations during double support and thus a
more static gait, because of that tangential forces are lower and so is
RCOF. These observations match human data as we will discuss in
Section VI-D.

C. ECOM-optimal planning: resulting paths and energetic advantages

In this section we analyze the walking paths generated by the
described ECOM-optimal planner in practice, as well as the paths’
expected electrical energy consumption. Our motivation for estimat-
ing electrical energy consumption was not only due to its practical
value in robotics, but also because mechanical work in humans is
related to metabolic energy (i.e. oxygen consumption) [36], [29].

Since the real WABIAN-2’s joints are driven by DC-motors [54],
we compute electrical energy as

Eele =
∑
i

(∫ t1

t0

|τiωi|dt+

∫ t1

t0

RiI
2
i dt

)
(6)

where i is an index of the motor, τ is motor torque and ω angular
velocity. I refers to current, which in simulation is computed as
τ/(r.Kτ ), where r is the motor’s gear reduction ratio and Kτ

the torque constant, taken from the motors’ data sheets. RI2 are
the power losses due to motor armature resistance and we ignore
mechanical losses such as joint friction.

We compare the resulting electrical energy consumption obtained
by our planner with a set of baselines: 1) minimum-travel-time
planner, 2) minimum-sum-of-torques planner, 3) directly optimizing
electrical energy consumption Eele as defined in (6). The results for
the baselines were obtained using exactly the same planner equations
(4) (5) and implementation, the only difference being that we replaced
ECOM by (∆tds + ∆tsw),

∫ ∑
i τ

2
i dt, and Eele respectively.

We conducted the experiments in three different scenarios which
we will now describe and analyze. Energy consumption results are
reported in Table I.

The first scenario (Figure 6) was as follows: the robot stands in
a ground with friction µground = 1.0 and has to walk to a target
which is straight ahead, 3m away. Between the start and finish points
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Fig. 4. Minimum ECOM measured in physics simulation, on flat terrain.
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there is an ”ice patch” of very low friction µice. We conducted several
planning experiments with different µice ∈ {0.12, 0.06} and different
widths of the ice patch ({0.5, 1}m). Figure 6 shows that using our
planner the robot walked through the ice for µice = 0.12 (specifically
it walked 5% slower than the optimal speed with increased double
support), but walked around the ice if µice = 0.06. When we doubled
the ice patch width but kept the low friction µice = 0.06, the
planner found it more optimal to go through the ice approximately
twice as slow (with increased double support) than around a great
distance. In terms of expected electrical energy (Table I), the paths
generated by our planner spent 2110 J, 2427 J and 3031 J respectively.
We also conducted experiments constraining the planner to take the
alternative, sub-optimal choice of avoiding the ice patch when it is
optimal to cross it and vice-versa. Such sub-optimal choices would
lead to 14%, 19% and 10% more electrical energy respectively. Thus,
an increase in COM work (sub-optimal plan) lead to an increase
in electrical energy consumption. The electrical energy obtained by
our optimal planner was relatively close to the real minimum of
Eele. Optimizing electrical energy directly lead to 25%, 12% and
18% less consumption than optimizing COM work. On the other
hand, optimizing travel time (common objective function of footstep
planners) would lead to drastic energy spending, increasing by 26%,
51% and 92%. Optimizing joint torques decreased energy spending
slightly by 11%, 3% and 13%.

The second scenario (Figure 7) was as follows: there are two stairs
at equal distance to the robot (x = 1 meter away, y = ±0.50m), both
ending at the same final height (z = 0.50m). One of the stairs has 3
high steps while the other has 6 lower steps. The goal of the robot
is to reach a distant centered position (x, y, z) = (3, 0, 0.5)m. The
energy cost should be the same if the stairs were identical. We show
the obtained footstep plan in Figure 8. The figure shows that the

planner opts for the lower-but-many-step stairs. The reason for this
result is that on steep stairs, steps become too costly for the distance
traveled. Notice that the slope of the energetic cost ECOM in Figure
3 is high in the direction of step height. We will further analyze the
cost of slanted locomotion in Section VI-D. In terms of expected
electrical energy (Table I), our planner’s path was 13% away from
the true minimum of Eele. The sub-optimal choice of taking the few-
but-high stairs would increase consumption by 9%, and optimizing
travel time would also increase consumption by 40%. Optimizing
joint torques lead to basically the same performance as ECOM (0.5%
more energy).

The final scenario was as follows: the robot has to climb a slope
to a target which is straight ahead, 2.5m away measured on a straight
line connecting the start and target points. The slope has an angle of
α ∈ {10, 20, 25} degrees. We show the planner results in Figure
8 and the simulation in Figure 7. The optimal path for the two
shallowest slopes was in a straight line to the target, but for α = 25◦

the optimal path was curved and at a slightly lower inclination.
These results match observations in human mountain paths as we will
discuss in Section VI-D. In terms of expected electrical energy (Table
I), our planner’s path for the 25 degree slope is only 5% away from
the true minimum of Eele. The sub-optimal choice of taking a straight
path to the target, instead of curved, would increase consumption by
1%. Optimizing travel time would increase consumption drastically
by 97%. Obtaining a path by optimizing joint torques revealed to
be unfeasible for our planner’s time limit (which was 10 minutes),
while an optimal plan was returned for ECOM in 10 seconds. By
analyzing our model and planner data our conclusion is that the sum-
of-torques function has high variance due to noise in simulated joint
torque measurements, and its optimization is prone to get stuck in
local optima. The electrical energy minimizing planner also includes
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µice = 0.12 µice = 0.06 µice = 0.06

Fig. 6. Optimal plans obtained by our planner in the ”ground and ice-patch” scenario. The top row shows the footstep plan and point cloud (red has friction
µice, blue µground = 1). Left: robot crosses a narrow ice patch (µice = 0.12). Middle: robot walks around the patch if its slipperiness is increased (µice = 0.06).
Right: robot walks slowly through the same ice patch in case the ice is wider (energy spent avoiding it would be too high).

Fig. 7. Optimal plan obtained by our planner in the Stairs scenario (left), and
Slope α = 25◦ scenario (right). Shallower stairs and slopes have lower cost.

a joint torques term and correspondingly also took longer to solve
the path to optimality (177 seconds) than when using COM work.

For all scenarios our ECOM-optimal planner found a first sub-
optimal path within 1 second and the optimal path within 1
minute. The computational speed improvement obtained by using pre-
computed energy costs for different step-friction combinations was
of around one order of magnitude for both the initial and optimal
paths. The ODE-simulated robot successfully walked without falling
in all situations, even at high slipperiness and slope levels.

From the optimal-vs-suboptimal experiments our results indicate
that ECOM correlates well with Eele. Still it was less susceptible
to local minima and long planning times than Eele or torque-
minimization. These three quantities (ECOM, Eele, sum-of-torques) are
all actually related with each other: Pearson correlation on data used
for energy model training was r = 0.78 between joint torques and
Eele, r = 0.54 between joint torques and ECOM, r = 0.58 between
ECOM and Eele, and r = 0.64 between ECOM and joint mechanical
work. Practically for our setup the human-inspired ECOM seems to be
the best objective function choice as a compromise between energy
consumption and computation time. Better optimization techniques
could probably make direct optimization of Eele more interesting, but
in any case our proposed planner can be applied to both functions.

D. Comparison with human observations

The optimization objectives and variables proposed in this paper
were inspired by human gait literature, as described in Section III.
We now compare the results of our models and planner with the
observations in human gait mentioned in that section.

Gradient of mountain paths. [29], [28] As we showed in model
and planning results in Figure 3, 8 and 7, high ECOM of slanted

terrain leads to a preference of our planner towards shallower slopes.
In our example scenarios, the robot took low-step stairs and a curved
20 degree path on a steep 25 degree slope. Likewise in humans,
mountain paths are predicted by oxygen consumption experiments on
slopes [29], [28]. According to [29], humans prefer to climb steep
mountains at a maximum inclination of approximately 14 degrees,
and in order to do that they climb not straight to the mountain peak
but in a curved pattern. Mountain path observations are also partly
reproduced by assuming minimization of COM mechanical work [29]
which is our objective function in this paper. In Figure 9 we plot
the chosen climbing angle versus the straight-line slope angle both
for humans and our robot. The curve corresponding to humans was
obtained by the data in [29]. The curve’s shape is the same for humans
and our robot: straight-line path until a certain angle, constant lower
climbing angle after that. The angle at which this transition occurs is
however different (approximately 14◦ for humans, 20 for the robot).
We believe this to be due to differences in motor efficiency since
WABIAN-2’s weight, dimensions and joint positions are inspired by
humans. We calculated the extra (constant) energy consumption of
humans that would lead to the same plot as our robot’s, and found it
to be 0.5cal/kg/m. This curve is also shown in Figure 9.

Horizontal cost of transport. [33], [35] The plots in Figure 4
showed energy consumption per step. A known result from human
biomechanics is, however, on the energetic cost per distance (i.e. cost
of transport). The contours of human oxygen consumption per meter
in steplength-steprate space actually resemble an hyperbola [33]. An
empirical formula explaining this data was estimated by Zarrugh
et al. [33], using which we computed the energy consumption of
a human with WABIAN-2’s physical limits (maximum step length
0.35m, maximum step rate 1.20). Figure 10 shows the humans’
cost of transport prediction, as well as WABIAN-2’s actual cost of
transport (i.e. minimum ECOM per distance). The hyperbolic shape of
the energy contours is similar to both humans and robot. The energy
minimum seems to be slightly shifted towards a higher step rate in
the robot’s case, which we assume to be due to motor efficiency once
again, although it could also be related to a lower range of motion of
the knees in our robot (up to 45 instead of 60 degrees). The similar
shape is not surprising since it has also been reproduced by computer
simulations of a simple bipedal walking model [35] using COM work
optimization during toe-off.

Required Coefficient of Friction. [20], [21], [27], [25] Figure
5, which shows the robot’s RCOF model, also matches observations
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Stairs Slope α = 10◦ Slope α = 20◦ Slope α = 25◦

Fig. 8. Optimal plans obtained by our planner in the ”Stairs” and ”Slope” scenarios. On steep stairs and slopes, it is more energy optimal to walk a longer
inclined distance but at a lower angle.

TABLE I
ESTIMATED ELECTRICAL ENERGY CONSUMPTION OF OUR PLANNER USING DIFFERENT OBJECTIVE FUNCTIONS

Scenario ECOM (this paper) Suboptimal ECOM Travel time Sum-of-torques Eele (ideal energy consumption)
Narrow ice µ = 0.12 2110 J +14% +26% -11% -25%
Narrow ice µ = 0.06 2427 J +19% +51% -3% -12%
Wide ice µ = 0.06 3031 J +10% +92% -13% -18%

Stairs µ = 1 4116 J +9% +40% +0.5% -13%
Slope µ = 1, α = 25◦ 4908 J +1% +97% (failed) -5%

*Note: Reported energy is the estimated electrical energy consumption (6). Percentage values represent additional energy as a percentage of ECOM (i.e.
(E′−ECOM)/ECOM). ”Suboptimal ECOM”: refers to a plan that takes a sub-optimal navigation option (i.e. around the ice instead of through; through instead
of around; using the few-but-high-step stairs; walking straight on a 25◦ slope instead of in a curve) although still optimizing ECOM given that constraint.
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Fig. 9. Optimal path inclination angle αpath as a function of the slope angle
α. If αpath < α then the path is curved at shallower inclination and longer
total distance.

in human gait. The figure shows that the higher ∆tds is, the lower
the RCOF. And also the lower the step length, the lower the RCOF.
According to [21] humans reduce RCOF (the shear-to-normal force
ratio) when walking on slippery terrain, which in our planner we
assume to be a walking constraint such that RCOF< µ. The higher
double support observation means that to be able to walk on more
slippery terrain (lower RCOF) the robot should opt for a conservative
gait that is more static, with lower tangential speeds and accelerations.
Also in humans a ”cautious”, more static, gait has been observed in
humans walking on slippery terrain [20], [21], [22], as referred in
Section II-B. On the other hand [27] specifically observed an increase
in double support time when walking on slippery terrain. Regarding
step length, [20], [21], [25] also observed that this variable is lower
when humans walk on slippery terrain. Reduction of step length is
actually an anticipation strategy used just before stepping on slippery
terrain [20], [21], [25], just as in our robot’s case it is planned by
assuming a constraint on RCOF [21]. While our planner uses a hard
RCOF constraint, the decision was mainly motivated for practical
and conservative reasons: a hard constraint lowers the risk of falling
by theoretically avoiding slippage completely and thus not having to
rely heavily on reactive slippage control. Humans, on the other hand,
could possibly use RCOF or a related metric as a soft constraint,
although we are not aware of any investigation on these lines.
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Fig. 10. Left: Our robot’s minimum ECOM per distance traveled. Right:
Oxygen consumption of a human with WABIAN-2’s physical limits, given
by the empirical formulas of human walking of [33]. Units are in percentage
of the minimum.

VII. CONCLUSIONS AND DISCUSSION

In this paper we showed that optimal footstep planning for hu-
manoid robots, by using simple principles and gait representations
from human gait literature, leads to both human-like walking behavior
and low electrical power consumption. Importantly, we showed
through several simulation experiments that the planner we proposed
here is well suited for challenging outdoor scenarios since it accounts
for ground friction and energy consumption.

We proposed a footstep planning algorithm with a human-inspired
objective (COM work), constraint (RCOF) and variables (step length,
width, height, double support time, swing time and knee flexion).
We showed that our models and planner lead to a number of
interesting observations such as: human-like RCOF, step length and
double support time changes on slippery terrain, human-like curved
walking on steep slopes after 20◦, and hyperbolic contours of energy
per distance in steplength-steprate plots. By estimating DC-motor
electrical power consumption from simulation data, we also showed
that planned paths had close to optimal electrical consumption, and
that higher COM work leads to higher electrical energy. These
observations and the simplicity of the model suggest COM work to
be an effective objective function for planning of robot locomotion.

Some points in this paper may be important to discuss:
Footstep planning with a learned model. Our footstep planner

relies on learned models of energy and slippage to plan optimal
footstep sequences. These models depend on both the robot and
whole-body controller used. Therefore, the models we obtained might
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differ from the ones obtained with different robots or using different
controllers. The approach is still general, and all that is required
to apply our planner is to learn the ECOM, RCOF, Ψ models in
simulation with the desired robot and controller.

Energy consumption. We show that COM work is related to
electrical energy consumption. However, at the cost of using a more
complex model, further energy savings can be obtained by directly
optimizing energy consumption. Also, an interesting extension of our
work would be to use the footstep planner’s path as an initialization to
a full-body trajectory optimization algorithm with the same objective.

Coefficient of friction estimation. The planner proposed here
relies on the knowledge of the coefficient of friction between robot
foot and the ground. While its estimation might be difficult in
practice, we believe material classification from images and tabled
COFs to be a feasible approach to the problem. Also, the planner can
still be applied when uncertainty in the estimation is considered. For
example, a margin can be added to the RCOF constraint depending
on the expected uncertainty.

Feasibility model. The use of a feasibility model learned in
simulation was crucial in our experiments. One of the problems
in footstep planning is to generate a plan for which whole-body
motion is feasible. In practice we found heuristic limits on stance
distances to be insufficient due to unmodeled kinematics and dynamic
unfeasibility. Learning feasibility as a function of step parameters
alleviated this problem and sped up planning considerably since more
stances and steps were discarded early on.

Planning footstep timing. This paper importantly shows that
planning time variables along with footstep placement is crucial when
including ground friction in the problem. The required coefficient of
friction (RCOF) for a slip to occur decreases with the decrease of step
length and with the increase of double support time, thus allowing the
robot to walk on very slippery surfaces by adjusting these variables
(as happens with humans [20], [21], [25], [27]). This also contrasts
to the common practice in humanoid robotics to use constant step
times.

Search speed. We compute parameters other than footstep place-
ment from state transitions, which reduces the A* search space
and increases search speed. Pre-computing energetic cost for many
combinations of footstep placement and µ also allowed for faster
search than if (4) were to be solved explicitly for each state expan-
sion. Instead we solve it only for the final obtained path, reducing
computation speed by one order of magnitude. Also, in this paper
collision checking was not necessary due to the absence of obstacles
in the tested scenarios. We expect current computational times to
increase when adding a collision checking algorithm to the problem.
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