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Abstract

Pedestrian detection algorithms are important compo-
nents of mobile robots, such as autonomous vehicles, which
directly relate to human safety. Performance disparities in
these algorithms could translate into disparate impact in
the form of biased accident outcomes. To evaluate the need
for such concerns, we characterize the age and gender bias
in the performance of state-of-the-art pedestrian detection
algorithms. Our analysis is based on the INRIA Person
Dataset extended with child, adult, male and female labels.
We show that all of the 24 top-performing methods of the
Caltech Pedestrian Detection Benchmark have higher miss
rates on children. The difference is significant and we anal-
yse how it varies with the classifier, features and training
data used by the methods. Algorithms were also gender-
biased on average but the performance differences were not
significant. We discuss the source of the bias, the ethical
implications, possible technical solutions and barriers.

1. Introduction

Recent research has brought to light some problematic
biases in computer systems [[11], artificial intelligence (AI)
[3, 6] and robotics [13]]. These studies, together with eth-
ical and social studies of disparate impact [1l], the nature
of algorithm discrimination [4], and concrete algorithm au-
dits [3, 16, 5, [15]], have shown the existence of a fairness and
justice dimension of algorithms. In computer vision, recent
papers have audited gender classification [5]], object detec-
tion [15] and facial analysis algorithms [14]. Consistently,
these audits have found troubling biases in the performance
of algorithms.

In this paper we focus on pedestrian detection algo-
rithms. The motivation for this audit is its relevance for the
physical safety of the people involved. Pedestrian detection
algorithms are used by mobile robots such as autonomous
vehicles (AVs), and performance differences in such algo-
rithms could lead to disparate impact in the form of bi-
ased crash outcomes. Recent examples such as the Uber
accident due to the low-confidence detection of a pedes-

trian [12]] further ground our motivation, since depending
on training set or algorithm biases these low-confidences
(or missed detections) could be more likely to happen on
specific kinds of pedestrians. Here we particularly focus on
age and gender bias evaluation—and conclude that there is
a clear worse performance of state-of-the-art algorithms on
children. We complement the analysis with some discus-
sion on the source of the bias, ethical implications, possible
solutions, and barriers to “solving” the issue.

2. Method
2.1. Dataset

Our dataset is an extended version of the INRIA Person
Dataset [8]. The INRIA dataset is commonly used for the
evaluation of pedestrian detection algorithms in the litera-
ture, for example within the comprehensive Caltech Pedes-
trian Detection Benchmark [[10]. The dataset consists of
pictures of pedestrians in streets and other urban scenarios,
annotated with bounding boxes of the pedestrians. We ex-
tended the test set of the INRIA dataset with gender and age
labels for each bounding box. In particular, we extended
each bounding box with an annotator-ascribed gender la-
bel which can be either “male” or “female”, and an age
label which can be either “child” or “adult” (see last sec-
tion for a discussion). We use the biological definition of
“child”, as a human between birth and puberty. Our as-
sumption when deciding to add this label was that children
could be more difficult to detect by algorithms because of
their size (smaller bounding boxes are related to lower de-
tection rates [[10]) and because they are typically more likely
to use varied postures (e.g. bending down to grab some-
thing of interest, running, sitting). We did not expect to see
differences in gender due to the nature of the task (i.e. to de-
tect a full-body pedestrian), but decided we should do it as a
way to contrast gender-bias issues in face [514] and pedes-
trian detection algorithms. The labelling process was man-
ual and done by a single annotator—the author. All pictures
were seen in order, and for each picture the annotator ticked
male/female/adult/child checkboxes placed over each of the
picture’s ground-truth bounding boxes. The final labels will
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Figure 1. Average miss rates of all methods available within the Caltech Pedestrian Detection Benchmark, evaluated on child, adult, female

and male-labelled bounding-boxes only.

be made available at http://www.martimbrandao.com/\

2.2. Measuring bias

The Caltech Pedestrian Detection Benchmark [10, 9]
provides detection results for various competitive and state-
of-the-art algorithms on the test-set of the INRIA dataset.
We used the open results and evaluation code from this
benchmark to evaluate method performance on subsets of
the dataset. In particular, we evaluated algorithm perfor-
mance in the “reasonable” subset of the test-set[ﬂ, as well as
male-, female-, child- and adult-only portions of that subset.
There are 589 bounding box detections in this set in total, of
which 37% were labelled “female” and 7% “child”. This al-
ready shows a bias at the dataset level. We use average miss
rate as the algorithm performance metric, where a miss is
an area overlap below 50%, as in [10]. In the context of
this paper, this metric is also an intuitive indicator of safety
risk—for example as a pedestrian being “missed” can di-
rectly translate into a collision with a mobile robot such as
an autonomous vehicle [12].

We evaluate bias qualitatively by comparing
male/female and child/adult miss rates, as well as
quantitatively by computing the average performance
differences, ratios and Wilcoxon rank-sum test p-values.
Similarly to the analysis of [14], we use the rank-sum test
as a measure of whether the distribution of performance is
the same for female/male and child/adult consistently over
multiple algorithms or not.

To evaluate the algorithms on subsets of bounding boxes
we used the “ignore regions” methodology of [10]] and as
implemented in [9]]. In this methodology, subsets of boxes

ICorresponding to a near view and no or partial occlusion. This is used
to disentangle between age/gender and small-bounding-box effects, but it
is also the main subset used in [[10] for evaluation.

(i.e. male, female, child or adult) are “ignored” by not re-
quiring detections on those boxes and not considering bad
detections as mistakes eithelﬂ We evaluate the performance
on children by ignoring adults, on adults by ignoring chil-
dren, etc. For simplicity, our labelling system does not
allow simultaneous male-and-female or child-and-adult la-
bels.

3. Results

Figureﬂ]shows the average miss rates for the child, adult,
female and male subsets of the dataset. The miss rates were
higher for children on 27 methods out of 33 (82%). This
percentage goes to 100% when considering only the 24 best
performing methods (miss rates below 30%). On average,
the difference between adult and children’s miss rates was
0.04 percentage points, or 0.07 for the 24 best performing
methods. These differences correspond to 1.3 times higher
miss rates for children than adults averaged over all meth-
ods, or 1.4 when averaged over the top 24 methods. Regard-
ing gender, miss rates were higher for female pedestrians on
24 methods out of 33 (72%). On average the difference was
0.01 percentage points (1.1 ratio).

Table[T]shows the average differences and ratios between
miss rates (child-adult and female-male), as well as the p-
values of the Wilcoxon rank-sum test. The statistical test
checks whether the distribution of miss rates is the same for
both age labels (or both gender labels). Low p-values mean
that the distributions are more likely to be of different me-
dian values. The averages and tests are made over the results
of multiple methods grouped by their features, classifier, or
training data. The table doesn’t show features, classifiers or

2In [10] the methodology is used to study the influence of bounding
box size and occlusion on algorithm performance.
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Method classifier | #methods | Avg diff | Avg diff | Avgratio | Avgratio | Rank-sum | Rank-sum
Age Gender Age Gender Age Gender

AdaBoost 19 0.03 0.01 1.29 1.13 0.063 0.213
deep net 2 0.11 0.03 1.86 1.49 0.667 0.667
latent SVM 2 0.07 0.05 1.21 1.21 0.667 0.667
linear SVM 4 0.03 0.00 1.06 1.07 0.886 1.000
pAUCBoost 2 0.06 0.05 1.34 1.35 0.667 0.667

| Method features | #methods | Age [ Gender | Age | Gender | Age [ Gender |
HOG 6 0.03 -0.01 1.15 1.00 0.420 0.853
HOG+COV 2 0.10 0.05 1.52 1.32 0.333 0.333
HOG+LBP 2 0.06 -0.01 1.52 1.00 1.000 1.000
channels 13 0.04 0.01 1.31 1.16 0.011* 0.088
multiple 5 0.02 0.02 1.12 1.14 0.738 0.690
pixels 2 0.11 0.03 1.86 1.49 0.667 0.667

| Method train set | #methods | Age [ Gender | Age | Gender | Age [ Gender |
INRIA 21 0.04 0.01 1.24 1.10 0.107 0.435
INRIA+ 2 -0.08 -0.02 0.90 1.06 1.000 1.000
INRIA/Caltech 6 0.10 0.02 1.71 1.20 0.011* 0.152

[Allmethods | 33 | 004 | 001 | 131 | 114 | 0043 | 0270 |

Table 1. Average miss rate differences, ratios and rank-sum tests.

followed by a *.

training sets which appear in less than 2 methods.

The results show that there is bias in terms of age
(p=0.043), but the bias in terms of gender is not signifi-
cant (p=0.270). Looking only at methods using the “IN-
RIA/Caltech” dataset combination for training, the age bias
is significant (p=0.011) even if the number of samples
is only 6. These correspond to the methods RandFor-
est, WordChannels, InformedHaar, SpatialPooling, NAMC,
SCCPriors, which all have above-average bias. Bias in gen-
der was close to significant for methods using “channels” as
the classifier (p=0.088). These methods were highly biased
in age as well (p=0.011). The most age-biased methods in
terms of miss rate difference were deep nets (0.11 differ-
ence or 1.86 ratio), but the number of samples was low (2)
and so not statistically significant.

4. Discussion

The results showed a clear bias of pedestrian detection
methods in terms of performance: children had higher miss
rates on 82% of the methods, and on 100% of the 24 top-
performing methods. The difference was 0.04 percentage
points on average, but up to 0.07 on methods trained on
the INRIA/Caltech datasets. These differences were statis-
tically significant. Female pedestrians also had higher miss
rates than male on 72% of the methods but the differences
were not statistically significant.

Differences and ratios are child-adult, female-male, child/adult,
female/male—so positive and higher numbers means worse performance for children and female pedestrians. For rank-sum tests, the
p-values are shown. Low p-values mean that the distributions are more likely to be of different median value. p-values under 5% are

4.1. Why the age bias?

The fact that the 24 top-performing methods all have
higher miss rates on children could mean that high-
performing methods are overfitting the distribution of ap-
pearance of pedestrians in the dataset, which is itself biased
towards adults. This dataset bias is only natural: for exam-
ple the demographics of France (home to INRIA) as of 2018
is such that 18% of the population is 0-14 years old [7].
Children are therefore less likely to be found by random
sampling. In addition to that, children are often in school
during working hours, which can make their presence in
pictures even lower. The difference in performance could
also come from an inherent difficulty of detecting children
when compared to adults: children are smaller and pedes-
trian detectors are known to perform poorly on small bound-
ing boxes [10], they are also more varied walkers since they
often run, play, bend down to pick things up from the floor,
etc.

4.2. Biased crash outcomes in AVs?

One of the most worrying conclusions of these results
is that algorithmic bias is likely to gain physical salience
in mobile robots such as autonomous vehicles. For exam-
ple, in our dataset the best performing detector is also one
where children’s and female pedestrians’ miss rates is al-
most double (1.83) that of adults’ and males’. A pedestrian
being missed by the perception system will most likely lead



to a collision, which means crash outcomes could identi-
cally be highly biased. Additionally, children are actually
the kinds of pedestrians we might want to protect even more
than others—both emotionally and morally in many ethical
theories [2].

4.3. Choice of algorithm is value-laden

The results in this paper also show that the choice of
pedestrian detection algorithm is value-laden. Choosing
a particular algorithm is making an implicit trade-off be-
tween efficiency and fairness. In the context of mobile
robots such as AVs, this is a trade-off between the safety
for some people and for others. This choice should be made
carefully. For example, even if the child-adult gap of the
best-performing method (PCN) is very high in our dataset,
children were still detected more often than the next-best
method, and so PCN could still be the best choice for an AV
company. The decision would be more complicated if this
was not the case.

4.4. Technical solutions and barriers

The results in this paper point to a need to obtain more
balanced datasets for pedestrian detection and for research
in fair detectors. However, there might be several barri-
ers to the dataset fix: there are privacy issues when obtain-
ing street-level datasets with recognizable gender, age, and
other features. Additionally, some countries may have reg-
ulatory protections against photographing children particu-
larly. Technical solutions at the algorithm level rather than
dataset collection level might have to be preferred for these
reasons.

4.5. Limitations of our study

The limitations of this study are many: we used a sin-
gle annotator and a single dataset. Our dataset was ur-
ban but not of driving situations, and so how these biases
would transfer to the AV context is not straightforward. The
choice of dataset was necessary because INRIA is one of
the few with considerable children pedestrians and consid-
erable closeness to the pedestrians to allow easy age and
gender labelling.

Importantly as well, gender was operationalized as bi-
nary and ascribed by the annotator even though it is an un-
observable characteristic on a spectrum. We admit that such
a choice of categories could potentially be harmful in the
way it perpetuates wrong conceptions of gender. We be-
lieve the results are still meaningful as they show potential
physical safety biases along personal characteristics.

Finally, the accident bias that we will see in real AV driv-
ing scenarios is most likely going to be different from what
we measured in our dataset. This is both because of the use
of different perception systems (LIDAR is the most com-
mon sensor in AVs) and because AVs will see the same
pedestrians over multiple images as the car moves closer,

and so might have a higher chance to detect the pedestrian.
Dataset bias can still be an issue in LIDAR data, and so
further investigation on this modality is needed.
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