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Abstract

This paper tackles the problem of designing 3D perception systems for robots with high visual requirements, such

as versatile legged robots capable of different locomotion styles. In order to guarantee high visual coverage in varied

conditions (e.g. biped walking, quadruped walking, ladder climbing), such robots need to be equipped with a large

number of sensors, while at the same time managing the computational requirements that arise from such a system.

We tackle this problem at both levels: sensor placement (how many sensors to install on the robot and where) and

run time acquisition scheduling under computational constraints (not all sensors can be acquired and processed at the

same time).

Our first contribution is a methodology for designing perception systems with a large number of depth sensors scattered

throughout the links of a robot, using multi-objective optimization for optimal trade-offs between visual coverage and the

number of sensors. We estimate the Pareto-front of these objectives through evolutionary optimization, and implement

a solution on a real legged robot. Our formulation includes constraints on task-specific coverage and design symmetry,

which lead to reliable coverage and fast convergence of the optimization problem. Our second contribution is an

algorithm for lowering the computational burden of mapping with such a high number of sensors, formulated as an

information-maximization problem with several sampling techniques for speed.

Our final system uses 20 depth sensors scattered throughout the robot, which can either be acquired simultaneously

or optimally scheduled for low CPU usage while maximizing mapping quality. We show that, when compared to state-

of-the-art robotic platforms, our system has higher coverage across a higher number of tasks, thus being suitable for

challenging environments and versatile robots. We also demonstrate that our scheduling algorithm allows to obtain

higher mapping performance than naive and state-of-the-art methods by leveraging on measures of information gain

and self-occlusion at low computational costs.
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Introduction

The performance of robot locomotion can depend highly on
the robot’s visual coverage and the quality of the map used
for navigation and planning. Real-world environments may
be of challenging geometry and visual occlusions, which
creates a demand for frequent, complete and precise visual
measurements. Versatile legged-robots further complicate
the perception problem, in that performance should be
robust to locomotion mode and potentially very different
robot configurations (e.g. crawling, walking, standing
manipulation, ladder-climbing).

In this paper we introduce methods to guarantee wide
visual coverage and high-quality 3D reconstruction on
versatile-locomotion legged robots. One of the motivations
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for this work comes from the observation that most state-
of-the-art robotic platforms use a single laser rangefinder
or a few stereo cameras to deal with all of the robot’s
tasks. There are several problems with such an approach.
First, while laser rangefinders do allow for large fields-of-
view, they are slow to perceive in all directions Fallon et al.
(2015). The limitations are clear in state-of-the-art robot
platforms such as the ones who participated in the DARPA
Robotics Challenge, which had slow update rates and low
visual coverage as reported by some of the teams Fallon et al.
(2015); Haynes et al. (2017). Even assuming the problem can
be mitigated in the future by improved sensors and rotation
speeds, robots with single head setups will be severely
constrained in terms of self-occlusions and blind-spots. Such
limitations could be fatal in robots capable of diverse walking
styles, where contact locations and locomotion directions are
arbitrary. In this paper we propose to instead use a large set
of depth sensors scattered throughout a robot’s links.

More concretely, the problem we are trying to solve in this
paper is the following. We are given a budget to buy and
install multiple depth sensors on a versatile legged robot. We
want to decide how many of such sensors to buy, where to
physically place them (in terms of the link to attach to and
the pose of the sensors), and how to schedule their use such
as to obtain high quality mapping (in terms of occupancy
grid entropy). Our objectives are to obtain a good trade-
off between mapping quality and the number of sensors
used. Our solution here is to decouple the problem into: 1)
Multi-objective optimization-based sensor placement design
for high coverage and low sensor count; and 2) A sensor
scheduling algorithm for high quality mapping given the
sensor placement design of 1).

Our problem is important because the safety and efficiency
of planning and control algorithms, as well as teleoperation
interfaces, rely heavily on map quality and completeness.
The problems are also challenging and interesting because

A. the robots we consider are capable of locomotion in
varied styles (e.g. crawling, walking, ladder-climbing,
etc) and as such the perception system should be
designed to be reliable on all of those styles,

B. the sensors are in general not required to be placed on
the body or a head, but could in principle be placed in
any link, in a way that is optimal for visual coverage
taking robot motion capabilities into account,

C. robots should ideally be self-contained, and so the
computing resources dedicated to each sensor should
be managed in smart and efficient ways so that all
processing can be done on-board.

This paper introduces and evaluates algorithms that consider
all such factors when designing a fully functioning
perception system for versatile legged robots.

Regarding the design of the many-camera perception
system, our approach to sensor placement is similar to
that used in sensor networks Bodor et al. (2005); Hörster
and Lienhart (2006); Chakrabarty et al. (2002): we use
optimization to select and rotate sensors from a pre-defined
set of possible locations such as to maximize coverage. An
important difference with respect to the sensor networks
literature in this paper is that sensors are not static but
will move with respect to each other over time, according
to the motion of the robots’ joints. Our approach is to
explicitly model the distribution of robot motion through
motion exemplars, and estimate visual coverage over the
different motions in expectation. In addition to that, and
since we consider multi-contact locomotion tasks, we use
task-specific optimization constraints which enforce that
all planned contact points are visible from at least one
sensor. And finally, we solve a multi-objective optimization
problem instead of single-objective (coverage) optimization.
Specifically we consider both the maximization of coverage
and minimization of the number of sensors, since the
latter is crucially related to real-world costs of installation,
weight, maintenance and others. We estimate the Pareto-
front of the multiple objectives, thus obtaining a set of
solutions with optimal trade-offs. Through this approach,
we can then use other considerations which are more
difficult to encode (e.g. space for cabling, difficulty of
attachment in particular locations) to actually choose the
final design without compromising on main-objective trade-
off optimality.

Our final design consists of 20 depth cameras scattered
throughout the body, legs and feet of the legged robot
WAREC-1 Hashimoto et al. (2017). The robot, shown in
Figure 1, is targeted at rescue missions in challenging
environments and is not only capable of multiple locomotion
styles (item A above) but it is also approximately symmetric
in all planes. This property increases versatility and
efficiency since locomotion can be made in all directions
(e.g. no need to rotate the body to look “forward” before
climbing a ladder). It also motivates us to include symmetry
as a constraint in the design optimization problem, leading
to faster convergence speeds as we show in the section
“Results”.

The high visual coverage we obtain by using 20 depth
cameras comes at the cost of additional processing needs,
since for example point cloud filters need to be run for all
cameras. We smartly schedule camera processing according
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Figure 1. WAREC-1, our robotic platform (before attaching any
visual sensors).

to predicted improvements in the environment mapping and
available resource limitations using information gain metrics
Delmerico et al. (2018). Note that even if scheduling reduces
the speed at which different regions of space are processed,
at least sensor acquiring order can be smartly controlled
to focus on important viewing directions (e.g. locomotion
direction, non-occluded cameras, etc), a kind of flexibility
that laser rangefinders do not allow. In order to formulate
our scheduling algorithm, we first pose the 3D volumetric
mapping problem as a process of decision making under
uncertainty, aimed at maximizing reconstruction quality. We
leverage on the anticipated measurement qualities, which are
provided by a probabilistic sensor error model, to develop an
improved reward signal for Next Best View (NBV) planning
based on expected entropy losses. Finally, we incorporate
efficient sampling-based techniques that allow for efficient
planning in a subset of possible perceptual actions, at the
expense of minor decrease in reconstruction performance.

As a summary, the contributions of this paper are the
following:

• We propose to optimize the number, position and
orientation of a large set of depth sensors on a robot
using a genetic algorithm for Pareto-front estimation,
thus obtaining an optimal trade-off between visual
coverage and the number of sensors

• We show that our method increases spherical coverage
considerably when compared to common design
approaches, and obtains good empirical coverage in

terms of both wideness of coverage and contact point
visibility

• We apply Next Best View (NBV) algorithms to the
problem of sensor scheduling in many-sensor legged
robots. While these algorithms are usually used to
choose the next camera view point, here they are used
to decide which of a set of sensors to acquire, given
the current robot posture and map.

• We propose and evaluate the use of Upper Confidence
Bounds (UCBs), pixel and camera sampling, self-
occlusion information, and task-relevant priors for fast
and highly informative scheduling reward signals.

• We demonstrate that our resource-constrained
scheduling algorithm outperforms several scheduling
algorithms and active vision baselines, both in terms
of time to perceive new objects and 3D reconstruction
quality.

The structure of the paper is the following: in the next
section “Related work” we situate and contrast our paper
with literature across multiple related fields. After that,
we dedicate a section to sensor placement “Designing a
many-sensor perception system” and one to scheduling
“Scheduling and mapping on a many-sensor perception
system”. Our “Results” section proceeds similarly by
first evaluating the sensor placement algorithm and then
the scheduling algorithm. Our evaluation includes both
simulation and real-robot experiments. We conclude and
discuss our results, limitations and future work in the final
“Conclusion” section.

Related work

Legged robot 3D perception-system designs

Most state-of-the-art robotic platforms use some combina-
tion of LIDAR and stereo for 3D reconstruction Fallon
et al. (2015); Atkeson et al. (2015); Kaneko et al. (2015);
Yoshiike et al. (2017); Tsagarakis et al. (2017); Radford
et al. (2015); Karumanchi et al. (2017); Haynes et al. (2017);
Hutter et al. (2017), as well as task-specific cameras for
teleoperation Atkeson et al. (2015); Fallon et al. (2015);
Kaneko et al. (2015); Yoshiike et al. (2017); Radford et al.
(2015). Even though the literature describing such platforms
does not quantitatively evaluate visual coverage or how
effective certain sensor locations are, some discuss lack
of visual coverage as a problem in operation Fallon et al.
(2015); Haynes et al. (2017) and the need for scattering more
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visual sensors throughout the robot as a solution Atkeson
et al. (2015).

Teams in the DARPA Robotics Challenge (DRC) using
the Atlas robot from Boston Dynamics relied on LIDAR
and stereo Fallon et al. (2015); Atkeson et al. (2015), as
well as fisheye cameras Fallon et al. (2015) or wrist and
knee cameras Atkeson et al. (2015) for visual perception and
teleoperation. The authors of Fallon et al. (2015) complain
both about low visual coverage of the system and the slow
1Hz update rate of LIDAR. The CHIMP robot Haynes et al.
(2017) employs a head setup with one LIDAR on each side
(i.e. at the “ears”) and forward-facing stereo. The authors
also mention the system’s occlusions were too high, in
particular for accurate visual odometry. Also at DRC, the
robot HRP-2Kai used a head design and LIDAR placement
such as to be able to cover points at the robot’s feet, as well as
cameras on the hands’ palms for manipulation tasks Kaneko
et al. (2015). The robot E2-DR Yoshiike et al. (2017) has
similar cameras on the hands, and a head-system similar to
CHIMP’s with two LIDAR sensors rotating along the yaw
axis (one sensor at each ear) and a front-looking stereo and
time-of-flight (TOF) camera. The quadruped legged robot
ANYmal Hutter et al. (2017) also uses a pair of LIDAR, one
in the front and one in the back of the body, as well as a pan-
tilt sensor head on top of the body for specialized sensors.
Robosimian Karumanchi et al. (2017) uses more sensors than
most legged robots, attached to different areas of the trunk. It
uses downward-looking stereo cameras on all sides, the belly,
and the head. Valkyrie Radford et al. (2015) is perhaps the
most sensing-intensive legged (humanoid) robot at present. It
uses stereo on the head, TOF and LIDAR on the head, wrists
and legs, and finally sonar on the waist. The authors do not
describe how to efficiently manage such a large amount of
data streams, nor do they quantitatively evaluate the sensor
placement design.

In general, literature on state-of-the-art robotic platforms
such as the ones just described, even those focused on
providing large fields-of-view, has not precisely evaluated
the effects of the design choices behind their perception
systems. Furthermore, the problem of how to effectively
deal with the amount of data that grows with the number
of sensors has been ignored and mostly been passed on to
the teleoperator’s decision-making process. Contrary to this
trend, in this paper we focus on precisely these two points.
We believe that there is a need to systematically evaluate
basic perception system features such as visual coverage, and
to develop algorithms to manage resources efficiently.

Design optimization

This paper is closely related to the literature on design
optimization. In mobile robotics, the problem has been
mostly approached in the “evolutionary robotics” and
graphics literature, for example for evolving robot designs
Sims (1994) and soft creature designs Cheney et al.
(2013) for locomotion in simulation. Brodbeck et al. (2018)
also applies similar methodologies to evolve real cubic-
module robots. And Schulz et al. (2017) uses simulation,
optimization and user interfaces in a loop to design origami-
like robots.

Although design optimization has not, to the best
of our knowledge, been put to practice in real legged
robot platforms, the topic is of high importance in
the industry. Particularly, the field of multi-disciplinary
design optimization deals with optimization formulations of
complex design problems, and has been applied to aircraft,
bridge, car, turbine design and others Martins and Lambe
(2013). In industrial robotics, design optimization has been
used to find optimal dimensions of grippers Saravanan et al.
(2009), gearboxes Pettersson and lvander (2009) and arm
geometry Park and Asada (1993). In this paper we take a
similar approach to the design of a perception system, in that
we formulate it as an optimization problem with a design
parameterized by sensor locations and rotations.

One issue with optimization-based design is that of
defining a single objective function encoding all relevant
factors (e.g. coverage, number of sensors, financial cost,
complexity, time to build the system). Sometimes, no
clear constraints exist on the different factors, but the
best possible trade-off is wished for. Recent evolutionary
algorithms can estimate Pareto fronts of multi-objective
problems Deb et al. (2002); Zitzler et al. (2001), which is an
effective way to lower the burden of formulation of design
problems. For example, Saravanan et al. (2009) uses Pareto-
front estimation to obtain trade-offs of different objectives
for design optimization of robot grippers. The approach
produces a set of solutions with optimal trade-offs, thus
freeing the designer to pick solutions using other, more
intuitive or difficult-to-encode considerations without fears
of losing optimality on the main objectives. In this paper
we use a similar approach, and compute the Pareto-front of
visual coverage and the number of sensors during design
optimization of our perception system. We then pick a design
from the set of optimal solutions by using considerations
not automatically extractable from robot CAD data, such as
difficulty of sensor attachment, space for cabling, etc.
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Visual coverage and sensor placement

Estimating sensor coverage, the focus of our design
optimization method, is a problem which is present in many
applications. Those range from sensor networks and video-
surveillance to ergonomic design, robotic inspection, robot-
based 3D object scanning, computer games and others.
Coverage can be defined as the number (or percentage) of
points of a region of interest which are within a sensor’s
feasible measurement range. For example, Mayol-Cuevas
et al. (2009) quantifies where best to place a wearable
camera on a human body by computing the percentage of
visible directions on the sphere and on a region of interest
using raycasts from many points placed throughout the body.
Interestingly, the head is one of the optimal locations for
a sensor in terms of visual coverage, implying humans
are already optimal in sensor placement. Similar metrics
are used in video-surveillance applications, for example by
optimizing the visibility of paths of objects of interest on
cameras Bodor et al. (2005), or the visibility of a set of
points sampled from an importance distribution Hörster and
Lienhart (2006). In inspection applications, the objective
may be for a moving sensor to cover points at an object’s
boundary. For example Englot and Hover (2013) plans
underwater robot trajectories that cover all points at an
object’s boundary.

Another definition of visual coverage is the average length
of rays sent from a sensor (i.e. average distance to the first
object hit) on uniformly sampled directions. The definition
makes sense for sensors whose performance worsens with
distance, and is used in tactical path-finding for non-player-
characters in computer games. The objective there is, for
example, to find locations where players can easily be
targeted by “snipers” or to plan paths through locations good
for “cover” (i.e. low visibility to avoid attacks) Millington
and Funge (2016). Computer games also employ efficient
representations for fast approximations of raycast-based
visibility, such as depth-buffer cube maps van der Leeuw
(2009).

In this paper we use the former definition of coverage: as
the percentage of visible points on a set. In particular, one of
the objective functions of our optimization algorithm is the
percentage of points which is visible by at least one sensor,
and points lie on a sphere which is centered at the base link of
the robot and has a large radius. The objective is to allow the
robot to see in all directions, which is especially important
for versatile locomotion robots which can walk, crawl and
climb in all directions. We also consider additional coverage
constraints that guarantee complete visibility of task-specific
points: in particular that the set of end-effector positions

in motion are visible from the preceding stance by at least
one sensor. We do this to allow for re-planning of contact
positions and visual servoing applications.

The problem of choosing where to place sensors in order
to optimize coverage is an important one in sensor networks
and video-surveillance Bodor et al. (2005); Hörster and
Lienhart (2006); Chakrabarty et al. (2002), where it is called
“sensor placement”. The goal there is to place sensors
statically in the environment such as to be able to track
people and other objects of interest for large distances and
across sensors. For example, Horster formulates the problem
as a binary integer program that maximizes coverage of a
sampled blueprint by selecting which sensors (of different
field-of-view properties) to place in which pre-selected
points. Sensor placement has also been studied in mobile
robotics, although to the best of our knowledge it has not
been used within an optimization problem. For example,
Keyes et al. (2006) evaluates two different options for
sensor placement in terms of situation awareness for robot
teleoperators. Mutlu et al. (2015) also evaluates different
options for camera placements, but with the goal of reducing
image blur on a snake robot.

In this paper we take a systematic optimization-based
approach to the sensor placement problem as in video-
surveillance Hörster and Lienhart (2006). However, our
problem is more general and complex, since sensors placed
on a legged articulated robot will move in position and
orientation as a function of time, not in fixed patterns but
freely within joint limits as a result of full-body trajectory
planning Brandao et al. (2016). The generalized problem is
then of optimizing coverage over the distribution of robot
motions, which we approximate by a set of exemplar motions
of different locomotion styles. Furthermore, visibility will be
a non-convex function of sensor orientation in our case due to
self-occlusions by the robot’s links, which makes it difficult
to find accurate approximate solutions. As a side note, the
name “sensor placement” is also used in part of the literature
to refer to the problem of planning a trajectory for a camera,
which is then tracked by a robot by a subsequent planning
stage Chen and Li (2004). This paper does not deal with the
locomotion planning problem but only with the problem of
designing the perception system, i.e. in which links, positions
and orientations to physically attach sensors on the robot,
considering the kinds of motion that the robot is expected
to execute. Our sensor scheduling problem is nevertheless
tightly related to the planning problems studied within the
“active vision” and next-best-view-planning literature, which
we turn to next.
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Active vision and sensor scheduling algorithms

The field of active vision is concerned with the problem of
controlling the viewpoint of a sensor such as to improve task
performance. The problem dates back to the pioneering work
of Aloimonos et al. (1988) and has been actively revisited
since then Scott et al. (2003); Chen et al. (2011). This is
essentially the same problem that we tackle in this paper:
to decide which sensor to process at each point in time such
as to improve mapping quality.

One approach to the problem is to incrementally compute
and target a sensor at the Next-Best-View (NBV) according
to some criteria related to task performance (e.g. reduce
entropy in 3D reconstruction). For example, Brandao et al.
(2013) proposes a simple NBV algorithm which greedily
targets the gaze of a humanoid robot at points of maximum
entropy along a robot trajectory. The NBV problem can
also be formulated as sequential decision making under
uncertainty, and framed within the reinforcement learning
domain Sutton and Barto (1998). For example, de Figueiredo
et al. (2018) formulates NBV as a Multi-Armed Bandit
(MAB) problem Katehakis and Veinott Jr (1987), which
allows to employ Bayesian Optimization (BO) to trade-
off exploration and exploitation. In particular, they use
confidence measures of 3D information and short-term
egocentric memory to autonomously drive a robot’s gaze
direction during search tasks using BO.

Another body of literature frames NBV planning
as a Partially Observable Markov Decision Process
(POMDP) Ahmad and Yu (2013); Butko and Movellan
(2010); Chong et al. (2008). Unlike MABs, these have
the advantage of allowing non-myopic planning. One
paradigm for solving POMDPs computes full policies offline
through comprehensive evaluation and induction, before
run-time Spaan (2012). Such offline methods are suitable
for problems involving relatively small state, observation
and action spaces, and achieve remarkable performance at
the cost of low computation speed due to the curse-of-
dimensionality and history Pineau et al. (2006). Online
methods, on the other hand, start from the current belief state
and simulate future rewards for finite planning horizons Ross
et al. (2008); Browne et al. (2012) using Monte Carlo Tree
Search (MCTS) techniques. Such methods can be run in
real-time, as demonstrated for example by Figueiredo et al.
(2017) in resource-constrained scenarios of multiple object
tracking.

In this paper we also adopt a POMDP formulation to
the problem of scheduling the next sensor(s) to process
on a resource-constrained many-sensor robot. In particular,
we use a POMDP formulation together with sampling

techniques for fast planning, which is of utmost importance
in the context of scheduling (i.e. the time spent on scheduling
itself should not surpass sensor acquisition and processing
time).

In the particular context of active 3D reconstruc-
tion Delmerico et al. (2018), existing NBV approaches
belong to one of two main categories: frontier-based
and information-driven planning. Frontier-based planners
Yamauchi (1997); Dornhege and Kleiner (2013) guide the
robot to boundaries between unknown and free space,
which implicitly promotes exploration. Information-driven
methods back-project probabilistic volumetric information
on candidate views via ray casting, and select the views
that maximize expected information gains Delmerico et al.
(2018). Methods differ in the way they define information
gain. For example, the authors of Kriegel et al. (2015) pro-
pose to use the average information theoretic entropy over all
voxels traversed via ray casting. Instead of just considering
the entropy, Isler et al. (2016) proposes a set of extensions to
Kriegel et al. (2015)’s information gain definition, including
the incorporation of visibility probability as well as the
likelihood of seeing new parts of the object.

In this work, we adopt an information gain definition
that similarly to the one of Palazzolo and Stachniss (2017)
computes expected entropy losses, by accounting for known
sensor characteristics. However, unlike common NBV
planning approaches that plan for single-camera trajectories
(e.g. Bircher et al. (2016)), our approach deals with the
problem of maximizing mapping quality of multi-camera
systems by scheduling the acquisition of cameras fixed
in different locations of articulated multi-legged robots.
Additionally, we consider an extra UCB term in the reward to
prevent consistently sampling from problematic sensors that
do not provide any information—this will prove crucial in
the experimental evaluation.

Visual mapping and terrain modeling

In this paper we use probabilistic 3D occupancy grids
for mapping and to guide sensor scheduling. Such maps
represent the environment as a block of cells, each one
having a binary state (either occupied, or free). They are
popular in the robotics community since they simplify
collision checking and path planning, access is fast and
memory use can be made efficient through octrees Hornung
et al. (2013).

Elevation maps Herbert et al. (1989) are a more compact
2.5D probabilistic representation that encode continuous
heights on a 2D grid Michel et al. (2005), offering a
convenient representation for legged locomotion Gutmann
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et al. (2005). However, they are unsuitable for complex
environments where the agent may have to navigate between
objects at distinct heights (e.g. a ladder, a structure with
several levels or floors). Multi-level surface maps Triebel
et al. (2006) overcome this limitation by storing a list
of heights for each cell grid. Despite being memory
efficient, their main setback, resides in the impossibility
of explicitly distinguishing between unknown and free
space, which is essential for environment exploration
and safe-navigation tasks. Recently, the idea of using
continuous representations in mapping has also attracted
great attention in the robotics community O’Callaghan
et al. (2009). For example, O’Callaghan and Ramos (2012)
uses Gaussian Processes (GPs) to encode interdependence
between cells and thus correlations between structures in
the environment. While continuous mapping based on GPs
offers a convenient framework for exploration via Bayesian
inference it still lacks computational efficiency, since it
relies on BO techniques in high-dimensional spaces. Recent
work of Jadidi et al. (2018) proposes the promising idea
of considering fewer observations for close to real-time
inference. However, GPs still require intensive sampling
during collision checking for motion planners, which could
be prohibitive for real-time applications.

In this paper we use the more mature voxel-based
environment representation, in particular the OctoMap
of Hornung et al. (2013), although in principle our efficient
scheduling algorithm can be applied to GP-based maps as
well.

Designing a many-sensor perception system

Consider a robot covered in depth sensors. At each of the
robot’s links, a set of locations where sensors can be attached
is identified, and a sensor is attached at each location. Our
approach in this section is to start from such an hypothetical
robot and then decide which of the depth sensors to keep and
which to scrap from the final design of the robot while at the
same time optimizing the orientation of the sensors.

Definitions

More formally, let C = {c1, ..., cK} be a set of sensors
indexed by K = {1, ...,K} where each ck is a tuple
(lk, xk, θk, uk) which indicates which link lk the sensor
is attached to, the position xk ∈ R3 and rotation θk ∈
[−90, 90]× [−90, 90]×]− 180, 180] degrees defined as the
roll-pitch-yaw Euler angles of rotation of the sensor with
respect to the link’s local reference frame, and finally a flag
uk ∈ {0, 1} indicating whether the sensor will actually be

included in the final design of the robot or not. Note that
although we use Euler angles, any other representation could
be used. For simplicity we also assume all sensors to be equal
(i.e. the same device) with equal shape, field-of-view, and
near and far planes. We will later on describe how sensor
locations are chosen.

We then define a set of tasks Q = {Q1, ..., Q|Q|}
that the robot is expected to execute, and which cover
the distribution of possible robot motions. These could
be instances of ladder-climbing tasks, crawling tasks,
manipulation tasks, etc. Task number µ is a sequence
of robot configurations Qµ = [qµ,1; ...; qµ,Tµ] ∈ RD×Tµ,
where qµ,t ∈ RD is configuration number t of task µ, D
is the number of degrees of freedom of the robot and Tµ

is the number of configurations in task µ. Additionally, for
convenience we assume that any neighbor configurations
in time (e.g. qµ,t and qµ,t+1) belong to different stances,
which in the context of this paper means that each new
configuration either adds or removes a limb from contact.
This will be useful when introducing task-specific coverage
constraints later on.

Deciding the final design will involve several conflicting
objectives, such as financial and assembly cost, data
throughput, visual coverage and others. In this paper we
focus on reducing the number of sensors used (which
translates to assembly, financial and data costs) and
increasing visual coverage (by choosing which of the
candidate sensor locations to use and the orientation of those
sensors). The number of sensors can be computed by a
function

fn(u1:K) =
K∑
k=1

uk,

where we explicitly write the dependency of the function
fn on the variables u1, ..., uK . Here and throughout the
rest of paper we will use u1:K as a compact representation
of all variables u1, ..., uK . Regarding visual coverage, in
this paper we define it as the fraction of a set of points
of interest that is visible from at least one sensor. We
consider two types of coverage: spherical coverage fc sphere

and task-specific coverage fc task. In the case of spherical
coverage, points lie on a large spherical surface centered
on the base link of the robot. We sample these points
uniformly on the surface, and so the points serve in
this case as a way to measure the number of viewing
directions that the perception system can cover. Coverage as
a fraction of visible points is also the representation choice
used by Mayol-Cuevas et al. (2009); Hörster and Lienhart
(2006). Spherical (viewing direction) coverage is especially
important in our problem since the robotic platform we will
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use is targeted at versatile locomotion in challenging and
unpredictable scenarios, where it can walk, crawl, or climb
in any direction and facing up or down. Regarding task-
specific coverage the idea is that, depending on the task,
specific regions of space might be of crucial importance
and thus should be given special consideration. Specifically,
the points of interest for task-specific coverage are end-
effector positions just before they are moved, i.e. end-
effector positions which are planned to move at qµ,t+1 should
be seen by at least one sensor at configuration qµ,t. The
motivation is to allow for re-planning of contact placement
just before contact, manipulation with visual servoing or
virtual-reality interfaces, etc. More formally, we compute
visual coverage as the expected value of point visibility, with
respect to robot task and configurations, as:

fc = E[fvisible(y, µ, q)]

=

|Q|∑
µ=1

P (µ)

Tµ∑
t=1

P (qµ,t|µ)
1

|Y |
∑
y∈Y

fvisible(y, µ, qµ,t),

where Y is the set of points of interest, i.e. uniformly-
sampled points on the sphere for spherical coverage fc sphere,
or the set of moved end-effector positions at qµ,t+1 for
task-specific coverage fc task. The function fvisible(y, µ, qµ,t)

is given by Algorithm 1 and returns 1 or 0 depending on
whether point y is visible or not from configuration qµ,t in
task µ. The probabilities P (µ) and P (qµ,t|µ) are priors for
the distribution of robot tasks and configurations on a specific
task, respectively (i.e. how frequently you expect the robot to
do a certain task and to be at a certain configuration during
that task). In our experiments we use uniform distributions
for both priors, P (µ) = 1/|Q|, P (qµ,t|µ) = 1/Tµ, in order
not to favor or overfit the design to specific tasks.

Algorithm 1 POINT VISIBILITY (pseudo-code for
fvisible(y, µ, q))

input: sensor set C; point of interest y; task number µ;
robot configuration q
for SensorIteration j ← 1, 2, ...,K do

if y ∈ FIELD OF VIEW(q, cj) and not RAY-
CAST HITS(q, cj , y) then

return: 1 {point is visible by at least one sensor}
end if

end for
return: 0 {point not visible}

Symmetry constraint

We enforce a symmetrical design, i.e. placement of sensors,
to be consistent with the symmetrical shape of our robotic
platform and to avoid overfitting specific tasks. As we will

show later, this choice will also considerably speed up the
optimization process because of a reduction in search space.

Our approach starts from asking a user to provide a
symmetric robot configuration and a set of symmetry axes.
Given this input, we visit each sensor in turn and identify its
symmetrically placed sensors. For each set of symmetrically
placed sensors, we will call one of them the “parent”.
Basically, the optimization will then be made only over
variables of “parent” sensors, while the variables of other
sensors will be implicitly given by the values of their parents.

Formally, we define a map π : K → {K ∪∅}, where
π(j) = k if sensor number k is a parent of sensor number
j. A sensor will have no parents (i.e. π(j) = ∅) if it is
already a parent of another sensor or if it has no symmetric
counterparts. For the design to be symmetric, a sensor cj
should be included in the design when cπ(j) is also included,
which means we enforce the constraint uj = uπ(j) for all
j : π(j) 6= ∅.

Rotations of symmetrically placed sensors should also be
symmetric, for which purpose we define a rotation multiplier
fmult : C → {−1, 1}3 which identifies whether the roll, pitch
and yaw rotations of sensor cj should be inverted or the
same as its parents’. We thus enforce the constraint θj =

θπ(j) � fmult(cj) for all j : π(j) 6= ∅, where � represents
component-wise multiplication.

We build the map π automatically from the symmetric
robot configuration and symmetry axes provided by the
user. Each sensor is visited in turn and its symmetrically
placed sensors given the symmetry axes are identified. The
identified sensors are marked as visited and their parents
set appropriately. The procedure is run for all remaining
unvisited sensors so that one parent will have multiple
“children”, but each “child” only one parent. The map fmult
is also built automatically and depends only on which plane
the symmetry occurs.

Semi-automatic detection of possible sensor
locations

Consider a bounding box of a robot’s link aligned with
the link’s local reference frame. We will refer to each of
this box’s sides as a “face”. Given a face of a robot’s link,
we generate possible sensor locations automatically in the
following way. We distribute a grid of points uniformly on
the face, separated by a distance equal to the maximum
distance of the sensor shape’s center to its edges, to avoid
inter-sensor collision. Each point is then projected back to
the 3D model of the robot link using raycasting along the

Prepared using sagej.cls



Brandao et al. ”Placing and scheduling many depth sensors” 9

face’s normal direction. Successful projections are added to
C, while raycasts that do not hit the original link are ignored.

To obtain the set of faces over which sensors are laid out
we use a semi-automatic approach. We start by assuming
all links could have sensors attached, and then we have a
designer (mechanical engineer) flag those links or individual
faces that are unusable—thus eliminating any sensors in
those regions. This manual step takes advantage of the
designer’s know-how and can hardly be done automatically,
since considerations such as space for cabling, possibility to
open holes in parts, etc, need to be used to discard some of
the sensor locations. Note that these considerations require
knowledge of properties not included in usual robot models
(i.e. materials, existing cables and holes inside parts, etc).
For this paper, we also allowed the designer the option to
manually add a sensor location to any link. This was done
only on the feet links, since the feasible attachment locations
are extremely constrained in that case - only one location per
face.

Optimization problem and algorithm

We optimize the choice of sensors and their rotations through
an optimization procedure. The problem is multi-objective
and of the following form:

minimize
u1:K ,θ1:K

( fn(u1:K) , −fc sphere(u1:K , θ1:K) ) (1a)

subject to

uk ∈ {0, 1} ∀k∈1,...,K (1b)

θk ≤ θk ≤ θk ∀k∈1,...,K (1c)

uk = uπ(k) ∀k:π(k)6=∅ (1d)

θk = θπ(k) � fmult(ck) ∀k:π(k)6=∅ (1e)

fc task(u1:K , θ1:K) = 1, (1f)

where θk, θk are parameters representing the angle limits
for sensor rotations. Note that we explicitly write the
dependency of the coverage functions on the optimization
variables for clarity.

Our approach to solving this problem is to compute
the Pareto-front of the objective functions, and then allow
a designer to pick one of the optimal designs using
his or her intuitions. The designer’s considerations could
include different costs and benefits of each design, such as
coverage gains per additional sensor, financial budget limits,
implementation ease, or others. We opt for this approach
for two reasons: 1) it reduces the room for gross designer
errors since all solutions along the pareto-front are optimal;
and 2) it alleviates the objective mis-specification problem,

in particular of ignoring important designer considerations
which are difficult to encode onto a single objective function.
We will discuss limitations of this approach in the last section
of the paper.

We solve problem (1) using NSGA-II (Non-dominated
Sorting Genetic Algorithm II) Deb et al. (2002). NSGA-II
is a genetic algorithm whose selection operator directs the
population’s individuals towards the Pareto-optimal front,
obtains a good spread of solutions within the front, and has
good empirical convergence properties compared to similar
methods. As a genetic algorithm, it is also suitable to the
non-convexity and non-differentiability of our problem.

Reformulation with penalties and symmetry

In practice, including nonlinear equality constraints such as
our task-specific coverage constraints in genetic algorithms
is not trivial since any perturbation in the optimization
variables may bring them out of the feasible set. For this
reason, we reformulate problem (1) into a simpler integer-
and-bound-constrained problem. For this we define K′ =

{k ∈ K : π(k) = ∅} as the set of all indices of sensors with
no parents, i.e. those sufficient to define the whole design.
Our new optimization variables will be u′1:K′ = [uk]k∈K′

and θ′1:K′ = [θk]k∈K′ , where K ′ = |K′|. Finally, we move
the task-specific coverage constraint to the objective function
using a penalty method and solve the following optimization
problem:

minimize
u′
1:K′ , θ

′
1:K′

( f ′n(u′1:K′), (2a)

− f ′c sphere(u
′
1:K′ , θ

′
1:K′)− αf ′c task(u′1:K′ , θ

′
1:K′) ) (2b)

subject to

u′k ∈ {0, 1} ∀k∈1,...,K′ (2c)

θ′k ≤ θ′k ≤ θ
′
k ∀k∈1,...,K′ , (2d)

where the functions f ′n, f ′c sphere and f ′c task are new versions
of the ones used in the original problem (1), but that
will convert the optimization variables to the full variables
u1:K and θ1:K before running the rest of the operations.
Additionally, α� 1 is a penalty coefficient. It should be
set to a large value (104 in our experiments) so that task-
specific coverage works as a constraint in practice. This
penalty function is a simple yet efficient way to include
constraints in evolutionary algorithms Coello (2002). We
refer the interested reader to Coello (2002) for a survey of
alternatives.

In the remaining part of the paper, we will represent the
solution of this problem that is finally implemented in the
robot by C∗, of size K∗ = |C∗| = f ′n(u′∗1:K′).
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Scheduling and mapping on a many-sensor
perception system

Since the robot computational resources may not be
sufficient to process all sensors at the same sampling step,
processing must be multiplexed in time. The scheduling
algorithm (see Algorithm 2), selects where to look next
at each time (i.e. which sensors to process), to improve
mapping performance under resource constraints.

Algorithm 2 Scheduling algorithm

input: grid map m; task prior D; number of cameras
K∗; maximum camera activationKmax; number of camera
pixels to sample F ≤ Np
begin procedure
select M < K∗ cameras, considering D (eq. 17)
loop over selected cameras:

uniformly sample F ≤ Np camera pixels
loop over pixels:

compute expected information gain (eq. 10)
select top Kmax expected reward cameras (eq. 14)
acquire point clouds from cameras and update m (eq. 6)
end procedure

Probabilistic volumetric occupancy mapping

Let us consider a map, defined as a 3D uniform voxel
grid structure that encloses the workspace around the robot,
represented by m = {mi}, where each voxel mi ∈ {0, 1} is
a binary random variable representing its occupancy. We use
recursive Bayesian volumetric mapping Thrun et al. (2005)
to sequentially estimate the posterior probability distribution
over the map, given sensor measurements z1:t and sensor
poses p1:t obtained through the robot forward kinematics
model, from time 1 to t:

P (m|z1:t, p1:t) =
∏
i

P (mi|z1:t, p1:t) (3)

assuming the occupancy of individual cells are independent.
Filtering updates can be recursively computed in log-odds
space Moravec and Elfes (1985) to ensure numerical stability
and efficiency using the the following iterative probabilistic
sensor fusion model

L(mi|z1:t, p1:t) = L(mi|z1:t−1, p1:t−1)

+ L(mi|zt, pt) + L(mi) (4)

with
L(.) = log

[
P (.)

1− P (.)

]
where L(mi|zt, pt) represents the inverse sensor model,
L(mi|z1:t−1, p1:t−1) represents the recursive term and

L(mi) the prior. We assume that the map is initially
unknown, i.e. P (mi) = 0.5, eliminating the last term of
equation (4).

Efficient probabilistic sensor model

At each time instant, each camera ck ∈ C∗ outputs a 3D
point cloud zt,k = {zot,k ∈ R3, o = 1, ..., Np}, defined in the
reference frame of camera k with origin at the camera’s
optical center, where Np is the number of camera pixels
(assumed equal for all cameras). Let us consider the set of
all ray traces from camera ck, Gt,k = {g1t,k, ..., g

Np

t,k }, and the
corresponding set of all traversed voxels, for a given ray trace
g, Vt,k,g = {v1t,k,g, ..., v

Nv

t,k,g} ⊂ m.

Our sensor noise model is based on the one proposed
in Nguyen et al. (2012), which assumes that single point
measurements zot,k are normally, independent and identically
distributed (iid) according to

zot,k|m, pt,k ∼ N (zo∗t,k; Σot,k) (5)

with
Σot,k = diag(σlt,k, σ

l
t,k, σ

a
t,k)

where zo∗t,k denotes the true location of the measurement and
σlt,k and σat,k represent the lateral and axial noise standard
deviations, respectively.

For the sake of computational complexity, we assume that
noise is predominant in the axial direction (σa >> σl) which
corresponds to the principal component of the covariance
matrix. This assumption allows approximating the 3D
covariance matrix by a 1D variance and rely on cheaper 1D
cumulative distributions, for efficient probabilistic Gaussian
fusion on 3D volumetric maps.

For each measurement zot,k, we then update the
corresponding closest grid cell mi as occupied, and
approximate the probability enclosed within the cell volume
as follows

P (mi|zot,k, pt,k) ≈ Fz
(
zot,k +

δ

2

)
− Fz

(
zot,k −

δ

2

)
(6)

where δ represents the grid resolution and Fz(.) the
cumulative normal distribution function of z, where the axial
error standard deviation can be approximated by a simple
quadratic model

σat,k ≈ λa‖zot,k‖2 (7)

with λa being a sensor specific scaling factor. All other cells
belonging to the set of voxels traversed through ray casting
(from the origin to end point zoi ) are updated as being free
with probability Pfree. This is a reasonable approximation,
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considering that map resolution and sensory noise have the
same order, while at the same time allowing to significantly
reduce the amount of computation.

Self-occlusion-aware expected entropy loss

Our scheduling algorithm tries to minimize reconstruction
uncertainty by prioritizing the robot’s limited resources to
promising 3D regions, and does so by choosing actions
which maximize rewards related to information gains. Let us
assume that each camera has a deterministic, time-varying
binary activation state

at ∈ {akt ∈ B, k ∈ {1, ...,K∗}} = BK
∗

(8)

where B = {0, 1} with 0 and 1 meaning ”off” and ”on”,
respectively.

In our formulation, the reward signal rkt (akt ) ∈ [0, 1] is
dependent on camera activation according to

rkt (a
k
t ) =


0 if akt = 0

1
|Gt,k|

∑
∀g∈Gt,k

1
|Vt,k,g|

∑
∀v∈Vt,k,g

It(v) if akt = 1
(9)

where |.| represents the set cardinality operator, and It(v)

represents the information gain for a given traversed voxel
v ∈ Vt,k, observed from camera ck and at time t. We define
this information as

It(v) = Iot (v)Ist (v) (10)

where

Iot (v) = H1:t(v|z1:t, p1:t)−Ht(v|z1:t−1, p1:t−1) (11)

represents the entropy loss (i.e. information gain) after
observing zt, and where

Ist (v) =

0 if v is occluded by the robot

1 if v is not occluded by the robot.
(12)

is an indicator function which is activated only when
voxel v is not occluded by the robot. We use raycasting
as implemented in the ODE library for the self-occlusion
computations ODE (2005).

The expected future entropy E [Ht+1(v|z1:t+1, p1:t+1)] is
obtained by considering the expected observation uncertainty
given by the observation model and one recursion of the

Bayesian filter, yielding

E [Ht+1(v|z1:t+1, p1:t+1)] =

= H
(
L−1 (L(v|z1:t, p1:t) + E [L(v|zt+1, pt+1, at+1)])

)
(13)

Hence, unlike the reward formulation in Isler et al. (2016)
which implicitly prioritizes resources to higher uncertainty
regions, our proposed reward function encodes the expected
decrease on entropy from observing a given voxel v from a
given robot configuration pt+1.

Information-driven scheduling under resource
constraints

Like other information theoretical approaches that use
uncertainty and task-related rewards to guide decision
making, we frame our method within the reinforcement
learning domain Sutton and Barto (1998). As such, the agent
selects the perceptual actions (i.e. which sensors to use) such
as to maximize expected cumulative rewards.

In the same spirit of Figueiredo et al. (2017), we formulate
our online sensor scheduling task as an information
maximization problem with resource allocation constraints
as follows:

maximize
at

RTt (at) = E

[
T∑
τ=1

γτ
N∑
k=1

rkt+τ (a
k
t+τ ) +

√
2log(t)

na,kt

]

subject to
N∑
k=1

akt ≤ Kmax ∀τ∈{1,...,T}

(14)

where T is the planning horizon, γ ∈ ]0, 1] is a discount
factor, Kmax is the maximum number of active cameras
per time-instant (i.e. camera activation capacity) and the
square-root term is an upper-confidence bound (UCB) Auer
et al. (2002) that handles the trade-off between exploration
(minimizing uncertainty) and exploitation (maximizing
rewards) Agrawal (1995). The vector nat =

[
na,1t , ..., na,Kt

]
is a camera activation history accumulator where each
element counts the number of times the respective camera
has been activated so far, and the division is element-wise.
We use this regularizing decaying term in order to deal with
problematic scenarios such as cameras without any obstacles
within the measurable range, or cameras which point at
large surfaces of problematic properties (e.g. very bright
surfaces in infrared sensors, no-texture in stereo). Using this
UCB promotes exploration and avoids such cameras being
consistently preferred.
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Efficient sampling-based scheduling solution Efficient
sampling algorithms are of utmost importance for real-time
complex event processing and decision making problems.
When dealing with large data streams, one would like to
analyze only a partial amount of the data to cope with
processing capacity, throughput and timing constraints.

In order to reduce the computational effort during
planning (i.e. sensor scheduling computation), at each
planning step t we consider only a subset of the total
number of cameras and rays cast from each camera. The
subset of raycasts is of size F ≤ Np and is sampled without
replacement from a uniform distribution in O(F ) time. The
subset of cameras is sampled from a discrete weighted
distribution Wc = {w1

c , ..., w
K∗

c }. With scalability in mind,
we rely on the reservoir sampling algorithm Exp-J proposed
in Efraimidis and Spirakis (2006) for drawing without
repetitions a weighted random sample of size M , in our case
representing a camera sampling constraint during planning,
from a population of size K∗, in O(M log(K∗/M)) time.
This weighted-distribution formulation is general enough
that task biases can be introduced into planning, which
can be useful for example if prior knowledge on terrain
geometry such as ceiling height is known - to avoid spending
computational resources on cameras which point at regions
of less importance for locomotion. These could be simple
uniform or more relevant (learned or hand-designed) priors.

To account for such task-related sampling biases we adopt
the unit sphere of orientations proposed in de Figueiredo
et al. (2018), which is a convenient and flexible structure for
encoding task-dependent orientation priors in an egocentric
reference frame, and promote more frequent sampling to
specific egocentrically encoded directions. The unit sphere of
orientations is centered in the robot base link, and comprises
a set of 3-dimensional unitary norm points, representing
viewpoint directions,

D = {dk ∈ R3, k = 1, ..., Nd : ‖dk‖ = 1} (15)

which are i.i.d. and sampled from a Gaussian Mixture Model
(GMM),

dk =
vk

‖vk‖
where vk ∼ P (v) =

Ng∑
ng=1

φngN (µng ,Σng )

(16)

where Ng represents the number of Gaussian components
and φng the weight of the ng-th Gaussian. The statistics
of the GMM must be chosen according to the walking
pattern and prior knowledge on terrain characteristics. If, for

instance, the task is to walk ahead on a rough terrain, one
could prioritize awareness to regions below and in front of
the robot, which can be achieved by sampling from a two-
component Gaussian Mixture, one with a larger mean in
the bottom direction and other in the frontal direction (see
Fig. 17). While if the task is, for instance, to walk through
a narrow passage, one could prioritize attention to the sides,
which can be achieved by sampling from a single component
Gaussian, with larger variance in the lateral direction. These
priors could also be left at a uniform distribution when such
information is not available. The crucial point here is that the
method allows to encode such priors. The i-th camera weight
is proportional to the following sum:

wic ∝
Nd∑
k=1

dk · ci (17)

where ci ∈ R represents the camera optical axis direction.

Results

Designing a many-sensor perception system

Robotic platform and target tasks We applied the design
optimization methodology described in this paper to the
robot WAREC-1 Hashimoto et al. (2017), which is shown
in Figure 1. WAREC-1 is a versatile legged robot targeted
at disaster response scenarios with high-power tasks in
mind. It weighs 150kg, and its custom-designed actuators
allow for climbing ladders and carrying heavy objects. The
robot can move in different modalities, such as crawling,
“belly-crawling” (i.e. crawling with alternating body and
end-effector contact phases), quadrupedal walking, bipedal
walking, wheeled locomotion (using modular attachable
wheels) and ladder-climbing. It is also symmetric and
can thus execute such modalities in different directions in
principle (i.e. inverting “feet” and “hands” or “front” and
“back”).

We chose a set Q of robot tasks, or motion exemplars,
according to these capabilities. To do so, we used robot
motions previously executed in field trials and their
simulations: wheeled motion, a manipulation motion, a
crawling motion, and a ladder-climbing motion. We used 1,
2, 2 and 5 robot configurations respectively, which was the
number of spline waypoints required to describe end-effector
trajectories. As mentioned previously, each waypoint either
adds or removes a limb from contact with respect to its
following and previous waypoints. Each task was given
the same total probability of 0.25. We also use a uniform
distribution of configuration probabilities per task which
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means that, for example, each ladder configuration is given
probability 0.05. We show the configurations in Figure 2.
While the number of postures and tasks is too low to model
an accurate probability distribution, it is an approximation
which represents the most common configurations of the
robot when using our existing planners and controllers.

The result of the semi-automatic generation of the sensor
set is shown in Figure 3. Sensors on the belly and some of the
arm links were excluded because of attachment difficulty or
to avoid reductions in movable joint range. These exclusions
were made by qualitative judgements of our mechanical
engineer. In particular, the belly of the robot (i.e. ground-
looking face of the trunk) can make contact with the floor
and thus the sensors could easily be damaged if placed
here. Additionally, the “shoulder” links and some of the
faces of the “knee” links were described as problematic
for assembly by the engineer, due to drilling and physical
space constraints. The final set of sensors used within the
optimization is of size K=47.

Choice of sensor We opted for using the sensor CamBoard
pico flexx from pmdtechnologies in our system design. The
choice was influenced by several factors:

1. Possibility of using multiple (10s of) sensors
simultaneously and on overlapping views, both in
terms of firmware limitations and data throughput.

2. Availability of ROS drivers

3. Size and cost

Importantly, pico flexx was the sensor we found which
allowed for the highest number of simultaneously connected
sensors, because of image size, firmware and sensor design.
Other sensors we considered were Kinect, Kinect 2, Xtion 2,
Stereolabs’ ZED and ZED mini, Code Labs’ Duo and others.
The sensor was also small (68x17x7.25 mm) and affordable
compared to other available sensors in the market, and had
a similar field-of-view (although slightly narrower than e.g.
Xtion2 62x45 vs 74x52 degrees). The camera produces
organized point clouds of size 224x171 at 5 to 45Hz using
infrared sensing. The parameters we used in the optimization
process and evaluation simulations were those in the sensor’s
datasheet: 62 x 45 degrees field-of-view, and 0.1 to 4.0 meter
range.

Implementation We used OpenRAVE Diankov (2010) for
computing forward kinematics and the Open Dynamics
Library ODE (2005) for raycasting. To check whether a point
falls inside the field-of-view of a camera we used simple
geometrical checks: of whether it falls inside the rectangular

pyramid given by the datasheet FOV angles and whether
its distance is within the measurable range. We generated
points on a sphere of 10 meter radius for visual spherical
coverage computations by uniformly sampling θ and cos(φ),
where θ and φ are spherical coordinates. After generating the
points we kept them fixed throughout the whole optimization
procedure. Figure 4 shows the sampled sphere.

For optimization we used DEAP Fortin et al. (2012), a
Python library for evolutionary algorithms, along with its
implementation of NSGA-II. We set all parameters to their
default values, and paralelized the optimization over 12
threads (6 cores) of a 3.3GHz desktop computer using the
distributed processing library SCOOP Hold-Geoffroy et al.
(2014). We set the sensor rotation angle limits to [−65, 65]

degrees for pitch and [−10, 10] degrees for yaw, in order to
avoid reducing the movable range of the robot’s joints taking
into consideration the space requirements for the sensor
and its holder. We fixed roll angles to zero for simplicity,
to reduce the number of variables, and also to keep low
the volume of new robot-model convex hulls (i.e. link plus
sensors).

Baselines In order to allow the comparison of our system’s
performance with state-of-the-art systems, we use a set
of “design approaches” of recent robotic platforms as
baselines. By “design approach” we mean a combination of
sensor placement and field-of-view. We selected and adapted
existing designs from the literature and internet, with a focus
on high potential spherical coverage. In particular, in this
paper we consider the following approaches, all shown in
Figure 5:

• “robosimian”-inspired approach, with multiple depth
cameras around the body. Using a crawling posture
as reference we use front/back-looking cameras (2),
45 degree downward looking cameras to the sides and
front/back (4), as well as downward looking cameras
(2);

• “robosimian-dbl”, same as previous but with upward-
looking cameras symmetric to the downward-looking
ones.

• “spotmini”-inspired approach, with a forward-looking
depth camera on the body and Velodyne-like 180x45
degree coverage on top of the body;

• “spotmini-new”, inspired by a newer version of Spot
Mini, with one depth camera at each side of the body;

• “e2dr”-inspired approach, a single head system with
wide-coverage. We use a forward-looking depth
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Figure 2. Robot configurations used for design optimization of the sensor system. From left to right, top to bottom: wheeled task (1
configuration), manipulation task (2), crawling task (2) and ladder-climbing task (5). In our experiments, each task as equal
probability.

Figure 3. The set of 47 sensors used for optimization. Both
sensor orientation and usage are optimized (i.e. roll-pitch-yaw
angles and binary variables indicating whether each sensor is
used in the final design or not).

camera and 180x180 degree coverage on each side. We
also add a backward-looking depth camera for extra
coverage (not present in e2dr);

• “e2dr-dbl”, same as the previous but with a duplicate
head at the bottom of the body as well for symmetry.

Note that for a fair comparison we replace laser rangefinders
by a set of depth cameras covering approximately the same
field-of-view. This is because we are interested in visual
coverage at any given time, in which case laser rangefinders
would only return points on a plane and not the whole field-
of-view. Therefore, our evaluation will show higher coverage
values than the original designs, and we stress that it is used
for comparison not with the original robots but with their
underlying sensor field-of-view and placement approach.

Figure 4. Robot and coverage sphere. In our sensor placement
algorithm we optimize the number of viewing directions covered
by the sensors, represented by the fraction of points visible on
the surface of a large sphere.

Optimization results We ran the optimization for 1500
generations, after which there were no visible changes in
fitness values. We used populations of 300 individuals. The
initial population was sampled randomly from a uniform
distribution within variable bounds. Figure 6 shows the
coverage and number of sensors of the initial and final
populations. Figure 6 also compares the estimated Pareto
front with the baseline design approaches. Interestingly, most
of the baseline design approaches fall on the Pareto front,
which means that state-of-the-art approaches are already
optimal for WAREC-1, or at least close to optimal, in terms
of placement and field-of-view. In other words, our approach
was not able to obtain higher coverage for the same amount
of sensors used, hence suggesting state-of-the-art approaches
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Figure 5. Design approaches used for comparison. From left to right, top to bottom: robosimian, robosimian-dbl, spotmini,
spotmini-new, e2dr, e2dr-dbl.

Figure 6. Left: initial and final population. Right: comparison with other design approaches.

place sensors in locations with the least number of self-
occlusions. The exceptions were e2dr and e2dr-dbl, which
performed poorly in terms of number of sensors in our robot
since they rely heavily on laser rangefinders and have much
occlusion with the shoulders and arms (which are larger
than the actual e2dr robot’s). While most baselines scored
between 20 and 30% coverage, robosimian-dbl obtained a
very high 60% coverage with only 18 sensors.

Figure 6 also shows that while baseline designs reached
a maximum of 60% coverage, our Pareto-based approach
also managed to find solutions of higher coverage - up to
80% even if no sensors were allowed on the robot’s belly.

Our solutions, as shown in Figure 7, manage to compensate
for the lack of sensors on the belly by using downward and
upward looking sensors on the feet, as well as downward-
looking sensors on the knees and elbows.

Finally, we evaluate the advantage of using the symmetry
reformulation (2). As shown in Table 1, using symmetry
reduces the number of variables to about a third (47
cameras to 16 parent cameras). The reduction in search
space is also associated with a higher maximum coverage
and maximum coverage-per-sensor, of around 10%. Note
that we obtained the results in the table using the
same optimization parameters and running NSGA-II for
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Figure 7. Examples of solutions in the final population. From left to right: number of sensors 14, 18, 29.

the same number of generations (1500). Also note that
the symmetry constraint does not reduce the number of
required raycasts since we do not require motions to be
symmetric and as such we still compute coverage on all
sensors. There is actually additional computation involved
in the symmetry-constrained algorithm, of inferring children
sensors’ parameters from their parents’. This is reflected in
higher computational time (4173 vs 3369 seconds for 1500
generations). We believe this gap could be made smaller with
a smarter implementation, which in our case recomputed
the full states from reduced states several times per fitness
evaluation. We should note that the range of the number of
sensors and of coverage is lower in the no-symmetry case
because we use a fixed number of generations. In principle,
the ranges obtained by NSGA-II should increase with
additional time, however at the cost of longer computation
times due to the 3x larger search space. In other words, the
results in Table 1 show that using symmetry constraints leads
to faster convergence.

Picking and evaluating the final design We had a
mechanical engineer go over the optimal solutions along the
Pareto front and pick one according to ease of attachment on
the real robot and financial budget. We picked the solution
with fn=20 sensors, shown in Figure 8.

Table 2 shows spherical and task-specific (i.e. contact
point) coverage on the optimized tasks, for both our final
design and the baseline design approaches. Most noticeably,
other designs often obtain 0% task-specific coverage, for an
average of 11 to 33% over all tasks. The exception is e2dr-
dbl (fn=44), which obtains 66% task-specific coverage on
average. Our final design obtains 100% coverage of contacts
in all tasks. Regarding spherical coverage, our design has
the highest expected value of 65%, and robosimian-dbl
obtains 63%. Note that the latter uses sensors on the belly,
which is difficult to implement in our physical robot in
practice, since the robot contacts the ground with the base

Figure 8. Final design of the robot’s depth sensors.

link itself in some locomotion styles (e.g. belly-crawl).
That is the reason why we excluded sensors in this area
during optimization. Nevertheless, our design still manages
to obtain slightly-higher coverage than robosimian-dbl by
relying on leg/arm-attached sensors. The other designs
performed poorly, scoring between 18 and 36% spherical
coverage for fn ≤22 and 60% for fn=44.

Table 3 evaluates and compares our final design on a
set of new tasks. Namely, we use a longer manipulation
sequence (34 configurations) and crawling sequence (200),
a new quadruped-walking motion on a plane (35), on stairs
(118), on a tall step (41), and a biped-to-quadruped transition
motion (14). The evaluation shows that our design’s coverage
in these tasks is very similar to that obtained on the optimized
tasks (68 vs 65%). This shows that the optimized design
is generalizable to new tasks and does not seem to have
overfitted the original tasks. The next-best performance is
again by robosimian-dbl. Interestingly, the coverage of some
designs (e2dr and e2dr-dbl) is highly dependent on the
task, varying within as much as 12 to 67% and 23 to 89%
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Table 1. Influence of symmetry reformulation

Condition NumVars Solved Time (s) NumSensors Coverage Coverage/NumSensors

Ours 16*3 Yes 4173 0 to 29 0.00 to 82.87 0.00 to 6.25
Ours no symmetry 47*3 Yes 3369 0 to 19 0.00 to 73.25 0.00 to 5.53

Table 2. Coverage (%) comparison with other design approaches, on optimized tasks

Spherical coverage

Task
Design ours

(fn=20)
robosimian

(fn=10)
robosimian-dbl

(fn=18)
spotmini
(fn=7)

spotmini-new
(fn=5)

e2dr
(fn=22)

e2dr-dbl
(fn=44)

Wheeled 67.57 31.83 59.70 19.43 19.93 10.47 12.33
Manipulation 63.42 35.20 58.52 17.30 19.32 11.88 79.83

Crawl 66.90 40.37 68.23 17.68 28.80 66.83 89.07
Ladder 63.36 36.37 64.23 17.88 23.97 46.86 59.45

All 65.31 35.94 62.67 18.07 23.00 34.01 60.17

Task-specific (contact) coverage

Task
Design ours

(fn=20)
robosimian

(fn=10)
robosimian-dbl

(fn=18)
spotmini
(fn=7)

spotmini-new
(fn=5)

e2dr
(fn=22)

e2dr-dbl
(fn=44)

Wheeled 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Manipulation 100.00 100.00 100.00 0.00 0.00 0.00 100.00

Crawl 100.00 0.00 0.00 75.00 25.00 0.00 75.00
Ladder 100.00 0.00 0.00 0.00 0.00 50.00 50.00

All 100.00 11.11 11.11 33.33 11.11 22.22 66.67

respectively. This indicates that some of the baselines we
tested could actually be preferred for robots of specific and
fixed locomotion styles.

Finally, we evaluate the influence on performance of the
choice of tasks used within the optimization. To do this,
we computed the coverage obtained when only a single
task is optimized (Table 4), and when all but one task are
optimized (Table 5). As before, all results shown in the tables
are for a 20-sensor design. The tables show that spherical
coverage is similar although slightly higher (2-3 percentage
points) when fewer tasks are considered. Except for the
ladder task, spherical coverage is basically the same whether
a single or all-but-one task are optimized. As seen previously
in Figure 6, spherical coverage is tightly related to the
number of sensors. Although the contact coverage constraint
is demanding, it it not demanding enough to considerably
influence the spherical-coverage-per-sensor. The ladder task
is an exception and is more demanding than other tasks, as
can be seen by the following points: 1) optimizing for the
ladder task alone leads to high satisfaction of other tasks as
well; 2) solving for all but the ladder task leads to higher
spherical coverage (8 percentage points). As a comparison,
this amount of spherical coverage increase corresponds
approximately to an increase of 3 sensors in the design
optimizing all tasks (Figure 6). Table 5 basically shows that

contact coverage constraints are demanding on the system—
as not considering a task will typically lead to the constraint
not being satisfied.

Real robot implementation Figure 9 shows the final robot
and a close-up of the installed sensors. We managed to
keep all cabling and processing inside the robot, in the
following way. First, we placed one USB hub inside of each
joint and ran cables inside the links and motors connecting
each consecutive pair of USB hubs. Then, we individually
designed in SolidWorks and 3D-printed one holder for each
sensor with the appropriate rotation angles with respect to
the link it was attached to. We opened holes in the trunk link
to pass sensor cables through, and installed 2 PCs∗ inside the
trunk link collecting half the sensor data throughput each.
With the double-PC setup it is possible to simultaneously
acquire data from all sensors, although at the cost of virtually
using all of the CPUs’ capacity (roughly 60% for acquisition,
40% for cloud filtering). In the next section we will evaluate
how scheduling can reduce this cost.

Figure 10 shows the robot walking on quadruped and
crawling styles while simultaneously acquiring data from all
sensors. As expected from the simulation-based evaluation,

∗Intel NUC Kit NUC5i7RYH, which have an i7-5557U processor (up to
3.40GHz), 16GB memory and weight 1.1kg.
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Table 3. Spherical coverage (%) comparison with other design approaches, on new tasks

Task
Design ours

(fn=20)
robosimian

(fn=10)
robosimian-dbl

(fn=18)
spotmini
(fn=7)

spotmini-new
(fn=5)

e2dr
(fn=22)

e2dr-dbl
(fn=44)

Manipulation long 63.46 34.74 59.29 18.35 18.89 11.85 78.84
Crawl long 66.73 40.30 68.16 18.03 28.83 66.94 89.13

Quadruped plane 71.62 33.98 61.85 20.09 23.01 18.45 23.31
Quadruped stairs 68.82 34.33 62.19 20.06 23.04 23.20 32.38
Quadruped step 70.70 32.15 60.02 19.89 21.48 17.76 20.82

Biped2quadruped 69.12 38.44 66.31 20.50 26.77 29.54 61.27

All 68.41 35.66 62.97 19.49 23.67 27.96 50.96

Table 4. Algorithm sensitivity: Coverage (%) on 20-sensor designs that optimize a single task

Spherical coverage

Evaluated task
Design Solving for

all tasks
Solving for

wheeled
Solving for

manipulation
Solving for

crawl
Solving for

ladder

Wheeled 67.57 79.53 63.60 58.63 63.60
Manipulation 63.42 69.00 70.40 72.38 69.75

Crawl 66.90 63.07 56.52 82.83 59.63
Ladder 63.36 61.41 61.96 64.90 71.43

All 65.31 68.25 63.12 69.69 66.10

Task-specific (contact) coverage

Evaluated task
Design Solving for

all tasks
Solving for

wheeled
Solving for

manipulation
Solving for

crawl
Solving for

ladder

Wheeled 100.00 100.00 100.00 100.00 100.00
Manipulation 100.00 0.00 100.00 0.00 0.00

Crawl 100.00 25.00 50.00 100.00 25.00
Ladder 100.00 0.00 0.00 0.00 100.00

All 100.00 11.11 33.33 44.44 55.56

Table 5. Algorithm sensitivity: Coverage (%) on 20-sensor designs that optimize all but one task

Spherical coverage

Evaluated task
Design Solving for

all tasks
Solving for all
but wheeled

Solving for all
but manipulation

Solving for all
but crawl

Solving for all
but ladder

Wheeled 67.57 59.83 69.60 76.30 76.53
Manipulation 63.42 67.52 64.12 68.92 75.52

Crawl 66.90 80.77 75.65 62.65 78.82
Ladder 63.36 64.42 69.97 67.38 75.33

All 65.31 68.13 69.83 68.81 76.55

Task-specific (contact) coverage

Evaluated task
Design Solving for

all tasks
Solving for all
but wheeled

Solving for all
but manipulation

Solving for all
but crawl

Solving for all
but ladder

Wheeled 100.00 100.00 100.00 100.00 100.00
Manipulation 100.00 100.00 0.00 100.00 100.00

Crawl 100.00 100.00 100.00 25.00 100.00
Ladder 100.00 100.00 100.00 100.00 0.00

All 100.00 100.00 88.89 66.67 55.56

the real system also has wide coverage. The figure shows
that both walls and obstacles in all directions, as well as the

ceiling can be acquired simultaneously for wide coverage.
One concern we had with these results was that when all feet
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Figure 9. Final robot and a close-up of the camera holders.

Figure 10. Point clouds of the full sensor system, when all sensors are acquired simultaneously (no scheduling). Top: quadruped,
bottom: crawling locomotion.
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are in contact, there are two blind-spots with no points on
the floor plane, along the forward-backward axis. We believe
the issue can be alleviated through sideways locomotion
plans (which is possible in our platform) or by integrating
information on a map (next Section). However, in Figure 11
we show that when the robot lifts its legs, the coverage
of the floor plane is increased, as well as the area for the
next contact point. This is obtained by design, since our
optimization problem (2) included a task-specific constraint
(i.e. contact point visibility from the previous stance).

We estimated point density at planned contact points
(i.e. number of cloud points on the area of contact) to
evaluate how well the task-specific constraint is respected
on real scenarios. We measured point density both on the
previous quadruped walking experiment (which was not part
of the tasks in the optimization problem), and on a crawling
experiment on top of rubble. Figure 12 shows the crawling
experiment and interface for estimating point density. Using
a foot-shaped box to count points at the next contact position,
we measured an average of just above 1000 points, which is
approximately 5 points per cm2 in WAREC-1. Such density
is higher than what is assumed at the contact planner level
Brandao et al. (2016) (0.5 points per cm2) and is enough
to accurately estimate normal vectors from nearest-neighbor
queries (which requires 20 neighbors or around 4 cm2 per
point in our current system). We will return to a further
evaluation of the real system later, after showing results of
the scheduling system in simulation on the next section.

Scheduling and mapping on a many-sensor
perception system

In order to analyze the performance of the proposed
information-driven sensor scheduler for active mapping,
we first conducted a set of experiments in the Gazebo
simulator Koenig and Howard (2004).

We considered a simulation setup (See Figure 13), that
incorporates multiple challenges that a smart dynamic
scheduling camera system has to face, including fast self-
motion and no-visibility viewpoints. In this scenario, the
robot is standing in front of a ladder, while moving its right
front leg up and down such as to be able to see the step
surfaces from above. Furthermore, there is no ceiling or walls
and therefore some of the cameras do not return any points.
An intelligent active mapping algorithm should exploit this
behavior such as to maximize task-related rewards, in this
case information gathering, by focusing on new rewarding
viewing directions as soon as they become available and
avoiding sensors with low visibility.

In all our experiments, the axial noise standard deviation
scaling factor was set to λa = 0.005 and the occupancy
probability threshold was set to Pocc = 0.7. In each
experiment we let the observer collect T = 100 observations
(i.e. planning and sensing iterations). Each experiment was
repeated 10 times to average out variability in different
simulations, due to the randomized nature of our algorithm,
and non-repeatability influenced by multiple simulation
factors including separate threads for Gazebo’s physics and
sensor generation, as well as stochastic latencies involved in
inter-process communication.

Reconstruction Performance Metrics We focused our
performance evaluation in the following metrics, which are
common in the NBV planning literature:

• the temporal information gain (or temporal entropy
reduction):

IGt =
∑
mi∈m

Ht(mi) (18)

which is a quality performance measure of the
knowledge regarding the surrounding environment,
gathered in the probabilistic volumetric map m, up to
time t.

When normalized by the number of planning (i.e.
sensor scheduling) steps it represents the temporal
average global information gain per reconstruction
step (i.e. sensor acquisition and insertion into the
occupancy grid):

IG/S =
1

T

T∑
t=1

IGt (19)

• amount of occupied cells (surface coverage)

SCt =
∑
mi∈m

1 (Pt(mi)) (20)

where

1 (Pt(mi)) =

0 if Pt(mi) < Pocc

1 if Pt(mi) ≥ Pocc

which is a measure of task-completeness and
quantifies the surface covered during reconstruction,
where Pocc represents the user specified probability
threshold of the volume being occupied.

When normalized by the number of reconstruction
steps it represents the average surface coverage per
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Figure 11. Simultaneously acquired point clouds, during quadruped locomotion. Left: all feet are in contact. Right: the robot lifts the
forward-left foot before contacting the floor again. Coverage of the contact area increases while the leg is lifted.

Figure 12. Point cloud density at the next contact point (task-specific coverage).

Figure 13. Image sequence of the scenario used for evaluation in (Gazebo/ROS) simulation

step:

SC/S =
1

T

T∑
t=1

IGt (21)

All experiments were run on an Intel R© i7 4712HQ CPU
and the average planning run-times were used to assess
our implementation efficiency and decide which sampling
parameter values are suitable for online performance (see
Table 9).

Resource-constrained sampling-based scheduling We
first analyzed the influence of different camera and ray
cast sample sizes in the trade-off between reconstruction
accuracy and run-time performance. We considered Kmax =

1, camera sample size M ∈ {1; 5; 10; 15; 20}, and ray cast

sample size F ∈ {0.01; 0.1; 1.0; 10.0} in % of Np. We will
later discuss how performance changes with the choice of
Kmax.

The map resolution was set to δ = 0.05m. The assessed
map entropy was considered within a cube of 15m, centered
in the robot base link at t = 0.

We compare the performance of our method to the state-
of-the-art NBV planning approach of Kriegel et al. (2015)
and a naive round-robin† scheduling algorithm Rasmussen
and Trick (2008).

†in round-robin scheduling each resource subset is activated (i.e. scheduled)
in equal portions and in circular order
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Table 9 shows computation times for the scheduling
algorithm and Figure 14 shows the entropy and coverage
gains per iteration. On one hand, Figure 14 shows
that information-aware approaches are intrinsically more
exploitative than deterministic round-robin scheduling
strategies, since they prefer maximum entropy never-seen
regions of the map. This is useful in fast-motion scenarios
such as ours, since there are short time-windows when
certain map regions are visible. The figure shows that our
method improves performance with respect to both a round-
robin strategy and to Kriegel et al. (2015)’s method. The
latter actually performs worse than baseline due to its greedy
utility function which tends to get trapped in high-entropy,
no-visibility viewpoints, as exhibited by the map entropy
curve in Figure 14 that saturates after a few iterations.
Our proposed UCB1 utility combined with anticipated
reconstruction improvements, ensures each camera is
selected infinitely often, hence promoting activation switches
from time to time and higher long-term payoffs independent
of the reconstruction scenario.

As can be seen in Table 6, Table 7 and Figure 14, carefully
balancing the planner sample size (i.e. number of considered
cameras and ray casts) can improve average performance.
Smaller sampling sizes result in faster planning and thus
more reactive exploratory behaviour (i.e. higher camera
acquisition frequency), while higher sampling sizes result
in better entropy approximations and rewards. However, the
slower reaction of highly-sampled planning can actually lead
to lower information gains per step as seen in Table 6,
where for example F = 1% is better than both F = 100%

and F = 0.01%. This is again because the time-window for
seeing certain map regions is short due to fast robot motion,
and long planning times will thus lead to activating those
cameras too late.

Then, we analyzed the trade-off between the the number of
camera activations (Kmax) and reconstruction performance.
We considered the following camera activations per time
instance Kmax ∈ {1; 5; 10; 15; 20}. We used M = 20 and
F = 1% for high performance and low computational cost
based on the results in Table 9 and 6. We measured run-times
for sensor acquisition and map insertion for different Kmax,
which we show in Table 8. As seen in the table, these run-
times increase approximately linearly with Kmax. Planning
time for our method is constant and equal to 0.66 seconds,
as we already saw in Table 9 (M = 20 and F = 1%), which
means that the computation overhead due to acquisition and
insertion actually dominates planning time for Kmax > 1.
This is reflected in a reduction of reconstruction quality
per time, as we show in Figure 19 where we compare

entropy and coverage gains over time using different values
of Kmax. Such performance reductions could be alleviated
with smarter parallel-insertion systems‡, although this is out
of scope of this paper. Because of these results, we use
Kmax = 1 for the rest of the experiments.

Task-dependent sensor scheduling To analyze the
influence of different camera sampling weights on mapping
performance, we considered three different priors, all with
standard deviation Σng equal in all directions (see Fig. 16):

• uniform: an unbiased distribution, created from a sin-
gle Gaussian (Ng = 1) with zero mean, representing
the absence of knowledge regarding the walking pat-
tern and the terrain characteristics;

• ground-biased: a distribution biased towards the
ground, created from a single Gaussian distribution
(Ng = 1) with non-zero mean, larger in the bottom
direction, to prioritize awareness towards the ground;

• bottom-front-biased: created from a two component
GMM (Ng = 2) with equal weights, the first having
the same statistics of the ground-biased, and the
second a larger mean in the frontal direction.

The results depicted in Fig. 17 demonstrate the advantage
of incorporating prior knowledge in the camera sampling
procedure, when it is available. For this particular scenario,
the bottom-front-biased distribution is the best performing
one, since sampling is prioritized towards the bottom of the
robot (ground) and the front (stairs), hence reducing planning
energy/time on cameras pointing towards unoccupied areas.
This result demonstrates how our method conveniently
allows setting task-related scheduling priors when they
are available, though they could potentially be learned.
Throughout the rest of the paper we will assume the use of a
uniform prior for simplicity.

Evaluation of sensor placement design in terms of

mapping performance In the final simulation experiment,
we once again evaluate our sensor placement design.
This time we do this evaluation in terms of mapping
performance instead of visual coverage (which was done
in Tables 2 and 3). We compare the map entropy and
occupancy obtained with our sensor placement design to the
performance obtained with the alternative design approaches
of before (i.e. the designs based on the state-of-the-art robots
robosimian, spotmini and e2dr). The results are depicted
in Fig. 18 and Tables 10 and 11. Consistently with the

‡We use Wurm et al. (2010)’s implementation, which is serial.
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Table 6. Average entropy per sensor scheduling step (IG/S) for Kmax = 1

M = 20 M = 15 M = 10 M = 5 M = 1

F=10% 72.2× 106 72.2× 106 72.2× 106 72.3× 106 72.3× 106

F=1% 73.1× 106 73.1× 106 73.1× 106 73.1× 106 73.1× 106

F=0.1% 73.0× 106 73.0× 106 73.0× 106 73.1× 106 73.1× 106

F=0.01% 72.9× 106 73.0× 106 73.0× 106 73.1× 106 73.0× 106

round-robin 72.8× 106

Kriegel et al. (M = 15, F = 10%) 72.9× 106

Table 7. Average surface coverage per sensor scheduling step (SC/S) for Kmax = 1

M = 20 M = 15 M = 10 M = 5 M = 1

F=10% 98.2× 103 10.3× 104 94.5× 103 91.1× 103 87.1× 103

F=1% 95.8× 103 91.8× 103 86.5× 103 81.4× 103 80.3× 103

F=0.1% 96.7× 103 87.4× 103 88.5× 103 90.0× 103 92.0× 103

F=0.01% 93.1× 103 80.8× 103 54.7× 103 47.5× 103 21.4× 103

round-robin 93.8× 103

Kriegel et al. (M = 15, F = 10%) 96.4× 103

Table 8. Average sensor acquisition + map insertion run-times [s]

Kmax = 20 Kmax = 15 Kmax = 10 Kmax = 5 Kmax = 1

Our 9.01 7.07 4.93 2.20 0.47

round-robin 9.03 6.70 4.53 2.23 0.43
Kriegel et al. 9.11 7.17 4.61 2.18 0.46

Table 9. Average planning run-times [s]

M = 20 M = 15 M = 10 M = 5 M = 1

F=100% 23.18 16.98 10.89 5.26 0.99
F=10% 2.34 1.76 1.18 0.59 0.12
F=1% 0.24 0.18 0.12 0.06 0.02

F=0.1% 0.01 0.01 0.01 0.01 0.01
F=0.01% 0.01 0.01 0.01 0.01 0.01

round-robin ≈ 0
Kriegel et al. (M = 15, F = 10%) 1.6

results of the previous section, our sensor placement design
outperformed all the others, even those comprising more
cameras such as the e2dr-dbl. These results show that the
high coverage obtained by the design optimization algorithm
also translates into high mapping quality. Importantly, they
also show that our decision to decouple the many-sensor
design-and-scheduling problem into a design algorithm
optimizing coverage and a scheduling algorithm optimizing
map entropy is effective at obtained high coverage and
mapping performance.

Evaluation on the real robot

With the aim of assessing the performance of the complete
system on the real robot WAREC-1, we created 3 different
experimental setups:

• Environment-scanning scenario (same as in the
previous section): the robot lays on the floor on a
crawling posture, making it too low to be able to sense
the surfaces of stairs which lie in front of it. The robot
then executes an up-and-down cyclical motion with
one of the arms such as to perceive the surfaces from
above using the sensors attached to the leg;

• Surprise-valve scenario: the robot walks with a
quadruped gait using a contact and full-body planner
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(a) Reconstruction evolution over sensor scheduling steps with our method for fixed F = 10% and M = 15
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(b) Fixed Kmax = 1, Fixed F = 0.1%, Varying M
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(c) Fixed Kmax = 1, Fixed M = 20, Varying F

Figure 14. Mapping performance of the different scheduling algorithms in simulation, per iteration. Iteration means sensor
acquisition and point cloud insertion into the occupancy grid.

Table 10. Average entropy per sensor scheduling step (IG/S) for Kmax = 1 and different designs

ours robosimian robosimian-dbl spotmini spotmini-new e2dr e2dr-dbl
(fn=20) (fn=10) (fn=18) (fn=7) (fn=5) (fn=22) (fn=44)

round-robin 723.8× 106 729.3× 106 729.4× 106 729.4× 106 727.8× 106 730.9× 106 731.0× 106
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(a) Fixed Kmax = 1, Fixed F = 0.1%, Varying M
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(b) Fixed Kmax = 1, Fixed M = 20, Varying F

Figure 15. Temporal mapping performance of the different scheduling algorithms in simulation

(a) Uniform (b) Bottom biased (c) Bottom (red) + Front (green) biased

Figure 16. Different considered egocentric camera sampling directions.

adapted from Brandao et al. (2016). Approximately at
the middle of the experiment, the space behind a wall

suddenly becomes visible, revealing a valve of high
mission importance;
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Figure 17. Mapping performance for different scheduler biases. Fixed M = 5
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Figure 18. Mapping performance on different design approaches.

Table 11. Average surface coverage per sensor scheduling step (SC/S) for Kmax = 1 and different designs

ours robosimian robosimian-dbl spotmini spotmini-new e2dr e2dr-dbl
(fn=20) (fn=10) (fn=18) (fn=7) (fn=5) (fn=22) (fn=44)

round-robin 81.7× 103 22.3× 103 21.2× 103 56.5× 103 38.3× 103 5.2× 103 6.3× 103

• Stair-climbing scenario: the robot climbs up a set of
stairs until it reaches a high platform with rubble.
It does so on a quadruped gait also planned using
the same algorithm of Brandao et al. (2016). Some
cameras are occluded by the robot’s limbs during
locomotion and should thus be avoided more often
during scheduling.

Figure 20 shows image sequences of all scenarios. The
test-field is a mock-up which we use for preparations for
the final test-field of the Japanese ImPACT Tough Robotics
Challenge Project, and is supposed to simulate search and

rescue missions in indoors disaster situations (e.g. a power
plant).

In Figure 21 we quantitatively assess the performance of
our method against the previously mentioned baselines. In
all scenarios, our method is the highest performing both in
terms of information gathering and surface coverage. Both
the speed of improvement and the final value of information
and coverage are higher when using our method, which
means that scheduling speed can also be reduced to obtain
the same mapping performance and lower CPU use.

Prepared using sagej.cls



Brandao et al. ”Placing and scheduling many depth sensors” 27

0 20 40 60 80 100
Iteration

7.20

7.25

7.30

E
n
tr

o
p
y
 [

S
h
]

1e6

Kmax = 1 (Ours)

Kmax = 1 (Round-robin)

Kmax = 1 (Kriegel et al.)

Kmax = 10 (Ours)

Kmax = 10 (Round-robin)

Kmax = 10 (Kriegel et al.)

Kmax = 20 (Ours)

Kmax = 20 (Round-robin)

Kmax = 20 (Kriegel et al.)

0 20 40 60 80 100
Iteration

0.0

0.5

1.0

1.5

2.0

O
cc

u
p
ie

d
 c

e
lls

1e5

(a) Mapping performance over sensor scheduling iterations.
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(b) Mapping performance over time.

Figure 19. Results for our and baseline sensor scheduling methods in simulation for varying Kmax, fixed M = 20 and fixed
F = 1%.

The actual maps obtained during the surprise-valve
scenario intuitively demonstrate how our method leads
to efficient use of computational resources in practice.
Figure 22 shows these maps as the robot walks past the
valve, which is circled in red. As soon as the robot walked
past the wall (t=11s), the method picked the sensor which
pointed at the previously-occluded region of space, thus
revealing the valve. The round-robin method did so 4s

later, at t=15s. This scenario qualitatively shows that our
method can obtain good mapping performance compared to
information-agnostic schedulers, even at low CPU loads. In
this case occupancy grid insertion ran at 1Hz, while still
perceiving objects quickly. Note that an agnostic scheduler
such as round-robin needs to “get lucky” in order to select
the right sensor once the valve becomes visible. For example,
to guarantee that the valve is seen within 1 second of our
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(a) Environment-scanning scenario

(b) Surprise-valve scenario

(c) Stair-climbing scenario

Figure 20. Image sequences of the scenarios used for evaluation on the real robot.

method, round-robin acquisition and grid insertion would
need to run at 20hz (to run through all sensors at each
second).

In these experiments all processes were ROS nodes, i.e.
20 cloud publisher (acquisition) nodes, 20 self filter nodes
and one octomap node. At the time of the experiment, the
implementation of our cloud publisher nodes did not take
advantage of the fact that only one cloud was being processed
per second, and therefore all the cloud publishing nodes were
constantly active at 45hz, spending 60% of CPU. However,
in principle the implementation can be changed such as
to only produce clouds on request, which would lead to
approximately freeing more than 54% CPU usage. We plan
to implement this change in the future. In addition to CPU
usage due to acquisition, filtering used 4% (instead of 40%
due to one sensor being used at a time), mapping 6% and
scheduling 8% (round-robin used 7%).

Conclusion

This paper introduced methods for both design and resource
management of perception systems consisting of a large
number of depth sensors. Our design optimization method
obtains optimal trade-offs of spherical coverage and the
number of sensors, and includes task-specific coverage
constraints, symmetry constraints and considerations of the

distribution of robot motion. Our resource management
method schedules sensor processing on a mapping task by
selecting which sensors to use at which time. It does so
based on a NBV planning approach with probabilistic sensor
models, information gain metrics and sampling techniques
for high-quality mapping with low CPU consumption.

We showed through comprehensive simulation experi-
ments that the design optimization method is capable of
obtaining up to 80% visual coverage on sample locomo-
tion tasks using 29 sensors, while design approaches of
state-of-the-art robotic platforms achieve only around 60%.
Our final design uses 20 sensors, has both high spherical
coverage of 65% and complete (100%) coverage of end-
effector positions. We also evaluated the whole system on
the real WAREC-1 robot, both quantitatively and qualita-
tively. The system successfully maps environments faster
than naive round-robin scheduling as well as the state-of-the-
art information-based NBV planning approach of Kriegel
et al. (2015). Furthermore, the system can be pushed to 45Hz
update rates if enough processing power is available.

Discussion

We strongly believe that wide-coverage and active vision
approaches to sensing such as those introduced in this
paper are of utmost importance for robots deployed in
the real world, where contact surfaces and obstacles might
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(a) Environment-scanning scenario
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(b) Surprise-valve scenario
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(c) Stair-climbing scenario

Figure 21. Quantitative results for ours and baseline methods in a real environment

be complex and thus they should be frequently sensed
for autonomous re-planning tasks, teleoperation tasks, and

others. In addition to that, since there is only so much
computing power that can be placed inside the robot, we
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(a) Our method

(b) Round-robin

Figure 22. Evolution of the occupancy grid over time (t=3,7,11s) on the surprise-valve scenario. The red rectangle marks the
object of interest, which hidden behind a wooden wall at t=0. When walking past the wooden wall, our method quickly picks the
previously-occluded viewing direction which reveals a valve (at t=11s) before the round-robin method does (at t=15s).

feel that processing resources should be managed such as to
provide effective active exploration, and autonomously such
as to reduce the burden on human operators. For example,
even though our system uses 2 PCs for perception, acquiring
and filtering all point clouds simultaneously already exhausts
the whole CPU power of both computers: 60% usage for
acquisition, and an extra 40% usage for filtering out points
which lie on the robot’s links (average 6 and 4% per camera
respectively). Our scheduling algorithm is flexible enough
that you can specify the number of sensors to process and
useful enough that it can focus on the right regions of space
when doing so.

There is a number of lessons that we learned from the
research presented here, which we would like researchers
and practitioners to take into consideration when building on
our work:

Blind-spots and objective specification While the final
design we implemented on the real robot had optimal
coverage for the number of sensors used, and planned end-
effector positions were visible from previous configurations,
we later realized that important parts of the working space
were not covered. Specifically, front and back regions of the
locomotion plane during quadrupedal walking are not visible
except at contact points, which in practice makes it difficult
to plan from the obtained maps unless the robot walks
sideways in quadrupedal mode. While walking sideways
is not a problem for our robot in terms of capabilities,
this limitation was not necessary. The lesson we learned
is that objective specification is difficult even within the
Pareto-front of coverage and sensor-count. In retrospect,
we should have simulated the different locomotion modes
in a robot simulator (e.g. Gazebo) to analyse whether we
were satisfied with the (un)covered regions in each mode -

before jumping to implementation on the real-robot. In other
words, we trusted too much on the sufficiency of our task-
specific constraint, while there were also other important
constraints. We also weighted the cost of installing and
buying extra sensors too heavily, and picking a solution with
around 2 or 4 extra sensors from the Pareto-front would have
alleviated this particular blind-spot problem. In the particular
case of our robot, our plan is to now keep these sensor
placements and re-run the optimization algorithm with free
extra sensors to increase coverage. Additionally, we plan to
more intensively evaluate performance in simulated tasks
before real implementation.

Specification-optimization loop More generally, and
following on the previous point, we believe that in practice
the design of many-sensor systems through optimization, as
we propose here, should be made in a loop of objective
specification, optimization, manually and qualitatively
inspecting performance of the Pareto solutions, back to
specification, etc. This is to further evaluate our actual needs
and help us through the process of understanding what we
as designers and robot users really want from the robot.
This problem of (mis)specification is actually an important
and trending topic of research, in particular in the artificial
intelligence community of safety Amodei et al. (2016), and
it pervades many robotics, planning and learning problems.
In the specific case of our algorithm, “specification” includes
both the specification of the objectives (e.g. spherical and
contact coverage) and the specification of the set of tasks to
optimize for. Additionally, manually added sensor locations,
the user-definition of sets of links or faces where sensors
cannot be attached, and the discretization used for the
automatic placement of sensors, are all also different kinds of
specification that will affect the final design. Misjudgements
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may lead to designs that end up not being feasible in terms of
assembly, or to not placing sensors where actually this was
possible and optimal. These considerations will also be part
of the specification-optimization loop in our problem.

Research on coverage definitions We understood
that there is a need for research on other definitions
of coverage other than “percentage of directions/points
covered” (expected value in our case). On the one hand,
we want to experiment with the definition of task-specific
coverage, such that it includes whole regions important for
locomotion and not just end-effector points (e.g. locomotion
plane, ladder rungs, etc), as well as more complex
environment priors. But more importantly, maximizing the
expected number of covered points ignores how these points
are actually distributed. We believe there is a need to research
and evaluate other metrics which also include distribution
considerations, for example metrics of uniformity, the
maximum area of blindspots, and others.

Sensor modalities and redundancy The particular sensor
we use is based on infrared but still has reasonable
performance outdoors. However, it has problems perceiving
many surface materials: from very bright, to transparent and
shiny-metal surfaces. This fact is problematic not only for
perception algorithms in general, but also for information-
based scheduling since unseen regions of “bad” materials
may be sampled more frequently than others even if nothing
is measured. At the scheduling level, research on alternatives
to our UCB term such as inhibition-of-return methods or
methods for adaptively changing priors for each sensor could
reveal fruitful. At the design side, ideally the optimization
should be made with a set of complementary sensors (e.g.
infrared, LIDAR, stereo) to obtain redundancy and higher
robustness to environment conditions.

Task priors for scheduling The task being executed
can actually provide many priors for how to effectively
sample cameras, independently of the planning horizon,
while assigning more weight to specific cameras. For
example, the locomotion direction, low-confidence areas
close to collision, the type of terrain, etc. In this work,
we proposed to use a randomized sampling mechanism to
egocentrically encode task-dependent priorities on sensor
orientations, using Gaussian Mixture Models (GMMs).
Cameras pointing towards higher density regions in the unit
sphere of orientations, are more likely to be selected at run-
time. In the future, it would be interesting to learn these
priors directly from experience, as well as to develop ways
of automatically detecting task switches.

Computation overheads In some cases, planning
agnostic solutions (i.e. round-robin or random) might

perform better per time instant due to the computation time
overhead of planning. While the planning time can be made
negligible and still keep high performance, it could become
significant at very high sampling frequencies (e.g. with
high-spec PCs or more on-board PC units). The overhead
can nevertheless be reduced since our algorithm is highly
paralelizable. For instance, the planning algorithm could
be easily implemented on GPU by parallelizing the reward
computation, based on independent summations. Finally,
our current implementation relies on data acquisition from
the selected resource only after decision, which introduces
another time overhead depending on data availability and
throughput. One could for instance benefit from a dedicated
buffered data acquisition thread, running in parallel.

Non-myopic planning Although the proposed sensor
scheduling optimization formulation allows considering
arbitrary planning horizons, the main goal during the
evaluation of our scheduling approach was assessing the
trade-off between mapping reconstruction performance and
resource availability (i.e. planning and mapping timings), in
a multi-camera system, mounted on a resource-constrained
multiple degree of freedom robot. Therefore, we only
assessed one step ahead greedy predictions. For future
work, one may consider the use of look-ahead tree
search techniques, namely beam search Ortmanns and
Ney (2000), or Monte-Carlo Tree Search (MCTS) based
approaches Kocsis and Szepesvári (2006); Browne et al.
(2012). These tackle the planning complexity’s exponential
growth with the time horizon, by expanding only the most
promising nodes at each planning tree level.
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