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Abstract

In recent years, the development and deployment of autonomous systems

such as mobile robots have been increasingly common. Investigating and im-

plementing ethical considerations such as fairness in autonomous systems is an

important problem that is receiving increased attention, both because of re-

cent findings of their potential undesired impacts and a related surge in ethical

principles and guidelines. In this paper we take a new approach to considering

fairness in the design of autonomous systems: we examine fairness by obtaining

formal definitions, applying them to a system, and simulating system deploy-

ment in order to anticipate challenges. We undertake this analysis in the context

of the particular technical problem of robot navigation. We start by showing

that there is a fairness dimension to robot navigation, and we then collect and

translate several formal definitions of distributive justice into the navigation

planning domain. We use a walkthrough example of a rescue robot to bring out

design choices and issues that arise during the development of a fair system.

We discuss indirect discrimination, fairness-efficiency trade-offs, the existence

of counter-productive fairness definitions, privacy and other issues. Finally, we

elaborate on important aspects of a research agenda and reflect on the adequacy

of our methodology in this paper as a general approach to responsible innovation

in autonomous systems.
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1. Introduction

In recent years there has been a proliferation of research concerned with

the ethics of autonomous systems and artificial intelligence, sparked by inves-

tigations of the ethical dimension to many of our seemingly-neutral digital,

transportation, robotic and other technologies [1, 2, 3]. This concern has led to5

greater pressure on developers to innovate responsibly, as well as to the devel-

opment of a great number of guidelines and principles for ethical development.

For example, an informal survey at the end of 2017 found that a total of 10 dif-

ferent sets of ethical principles had been proposed by December 2017, seven of

which appeared in 2017 [4], and the number keeps growing until today [5]. Such10

guidelines and principles are helpful in providing a framework for researchers

and practitioners. However, they are limited in terms of supporting researchers

and practitioners to actually implement and satisfy the principles in practice.

For example, it is often not clear how “fairness” or “beneficence” principles are

relevant to a new technology, or how to respect the principles in practice.15

Our approach in this paper is to unpack the concept of an ethical concern by

collecting definitions from the technical and philosophical landscapes and then

applying them to a technical problem. In particular we focus on fairness and

what seems to be a rather mundane technical problem—robot navigation. We

build a resource of formal definitions of fairness in this context, as well as a set20

of design options related to fairness in navigation. Together with simulations

of deployment outcomes (i.e. inequalities in access to the robot) this resource

can be used to guide responsible innovation of the technology in question and

to better ground discussions between stakeholders at the design stage. We then

reflect on the adequacy of the approach as a general method to use in the early25

stages of the design of autonomous systems for responsible innovation with

ethical considerations.
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In this paper we guide the reader through a walkthrough example of a robot

navigation application to bring out the fairness dimension of the system, the

fairness-related design choices, and to finally establish a research agenda for30

responsible innovation in autonomous systems with respect to fairness.

Our contributions are the following:

1. We show the fairness dimension of robot navigation, using a walk-through

example of a rescue robot to bring out concerns and contrast to other

robot applications.35

2. We build a resource of formal definitions and design choices related to

fairness in the context of robot navigation.

3. We use a new methodology for responsible innovation based on such a

resource and the simulation of technology-deployment outcomes, which

we argue should make it easier to ground discussions with stakeholders40

during the early stages of design.

The paper is organized as follows. In Section 2 we overview relevant concepts

of responsible innovation, algorithmic fairness, discrimination, distributive jus-

tice, and issues of context and trade-off in fairness. Then, in Section 3, we use

a walkthrough robot navigation example to argue for the existence of a fairness45

dimension to navigation planning. In Section 4 we outline multiple definitions

of fairness in terms of formal fairness “objects” (what we want to be fair to) and

specifications (what being fair means) in the context of navigation planning. We

use the same walkthrough examples to draw out challenges and design choices

that have to be thought through when deploying such methods. We discuss what50

the responsible development of fair planning methods requires in Section 5.2, a

research agenda in Section 5.3 and the methodological contribution of the paper

in Section 5.4. We conclude with a general summary in Section 6.
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2. Fairness and responsible innovation

2.1. Responsible innovation55

The growth of ethical guidelines for AI demonstrates a commitment to good

practice across academia, industry and policy. However, it does not in itself

guarantee ethical practice and does not necessarily specify how ethical conduct

can be achieved. Winfield and Jirotka [4] argue for an agile and inclusive ap-

proach to ethical governance by drawing on the field of Responsible Innovation60

(RI). RI emerged from concerns surrounding the societal and ethical conse-

quences of novel technologies [6] and has gained prominence in recent years as

an EU and a UKRI1 initiative that focuses on practices of “responsible devel-

opment” in scientific research and ICT. The RI approach serves to explore and

develop the means by which societal and ethical concerns can be identified and65

addressed throughout processes of research and innovation. Central to RI is to

enable an inclusive, reflexive and accountable research and innovation process.

This is for the most part achieved through the involvement of relevant stake-

holders throughout the entirety of the research and innovation life cycle [7].

It emphasises the need to be sensitive to local, social and cultural contexts in70

the application of new innovations, to acknowledge the perspectives of relevant

stakeholders and to recognise the importance of timing in the introduction of

new measures that affect large groups of people.

A further aspect worth stressing is that RI is about anticipating issues, taking

into account wider social, ethical and environmental issues and being able to cre-75

ate flexible and adaptive systems to deal with these unintended consequences—

or what is known as anticipatory governance. Crucially, the RI approach is

proactive and preventive rather than reactive, and is not intended to constrain.

Instead it serves to help individuals and organisations to ensure the accept-

ability and societal desirability of research and innovation by influencing the80

trajectory of development early on in the innovation process. Thus, it can be

1United Kingdom Research and Innovation
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seen to shape a creative space in which researchers and innovators can generate

insights informed by and aligned to societal and ethical concerns. This benefits

the development of innovation and increases the likelihood of its acceptance in

society. RI principles are highly compatible with well-established practices in85

Participatory Design. The two may be combined [8] to include a broad range of

stakeholder perspectives and encourage reflexive awareness amongst developers

of their own role in the design process.

RI can offer insights into the practical application of robotic technologies in

order to understand how automated processes might be used in heedful ways90

that are ethically justified and do not compromise individual or group well-being.

It avoids overly simplistic “one size fits all” solutions and adds an appreciation

of context to abstracted discussions of ethics. The notions of responsibility and

fairness are core aspects of the field, and can be seen to illuminate questions over

how an autonomous system might be designed to make “fair” decisions. Indeed,95

existing work conducted from an RI perspective [9, 10] has highlighted that fair-

ness considerations are crucial to stakeholders when considering the application

of autonomous systems. Similarly, questions of fairness, and controversies over

lack of fairness [11, 12] have dominated public discussions of AI ethics.

Despite a wealth of academic literature on the subject, it is very difficult to100

formulate a working definition of what is actually constituted by “fairness”. As

we will see in Section 2.4, there are multiple theories of fairness only within the

philosophical literature. In relation to automated decision making, discussions

of fairness in the literature typically make reference to some or all of the following

factors: moral responsibility of human actors; controlling the problems caused105

by automated processes; preserving the effectiveness of the technologies being

used; and reducing undesirable outcomes. Rather than applying only a pre-set

definition of fairness, we argue that it is possible to unpack what the concept

means within a particular scenario. Drawing on the perspectives of RI we can

examine fairness in a way that is context specific and that focuses on how fairness110

might be pursued in a practical sense.
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2.2. Inequality

Recent studies have shown that machine learning algorithms perform better

for some people compared to others. For example, the popular investigative

journalism article from ProPublica [12] revealed striking statistics regarding a115

recidivism prediction algorithm in use, called COMPAS [11, 13]. Recidivism

prediction algorithms are algorithms that try to predict the likelihood that re-

leased criminals will re-offend. The article showed that black defendants were

more likely to be wrongly predicted to re-offend, and white defendants were more

likely to be wrongly predicted not to re-offend. Studies of facial analysis algo-120

rithms [14] have also shown the presence of large disparities in performance of

commercial gender classification systems across gender and skin-tone. They re-

ported up to 34% higher misclassifications on darker-skinned females compared

to lighter-skinned males. They also found a large bias towards lighter-skinned

subjects in related datasets. Similar disparities in performance were also shown125

to exist in facial analysis algorithms between healthy older adults and those

with dementia [15]. Yet another example of measured disparities in algorithm

performance is [16], which shows that state-of-the-art pedestrian detectors have

considerably higher miss rates on children. The consequence for mobile robots

such as autonomous vehicles (AVs) is that children could be more likely victims130

of accidents with AVs were they to be deployed with such algorithms.

Examples of social inequalities produced by seemingly fairness-unrelated

decision-making are numerous and extend well past recent machine learning

developments. In the field of “environmental justice”, for example, researchers

have argued that the implementation of some transportation policies, such as a135

new metro system in San Francisco [2], which could supposedly improve mobil-

ity and access to jobs, can indirectly reinforce inequalities of opportunities—in

particular deteriorating the access to transportation and the job market by low-

income groups. Other work has shown that waste management sites are often

concentrated on low-income, and high racial-minority-percentage locations [17].140

Often such policies do no overtly target such populations, and inequalities of

access or exposure to harm can happen because people are not uniformly dis-
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tributed across space and are in fact usually distributed in ways that relate to

economic, cultural and racial factors [2, 17]. Discrimination is also often em-

bedded within housing markets and the organization of institutions [17], which145

can implicitly influence decision-making and decision outcomes.

These particular discussions of spatially-organized inequalities also relate

strongly to mobile robotics. The goal of autonomous vehicles is supposedly to

improve access, quality and/or safety of transportation, but could come with

extra costs of reinforcing inequalities of access, pollution exposure, or others.150

Other service robots such as guide or shop-assistant robots may also provide

differential benefits across hospitals or shopping areas. If spatially-organized

inequalities can be argued to be unfair (which they can as we will see later),

similar claims of (un)fairness could also be made about the way mobile robots

are programmed to navigate environments, because of inequalities they might155

produce. We will discuss this in more detail later in Section 3.2.

2.3. Indirect discrimination

The previous examples of inequality were measured along a set of categories,

or personal characteristics that were deemed relevant to the task. In recidivism

the focus was on race, in facial analysis the focus was on race, gender, and age,160

and in environmental discrimination the focus was on race and income. In all the

examples the inequality was (supposedly) not produced deliberately but resulted

from correlations within a dataset or within the spatial distribution of people.

They are, therefore, a form of indirect discrimination. Indirect discrimination

occurs when a policy or decision, while not explicitly targeting specific people165

or groups, has worse effects on people of a particular group [18].

The assumption behind all these examples, however, is that such categories

are in fact morally relevant. There is the assumption that we know which fea-

tures of individuals matter and which don’t when evaluating fairness. These

features are usually called “protected characteristics” in the literature of po-170

litical philosophy, and the motivation behind the choice of the categorization

(gender, race, etc), at least in the “fair machine learning” literature is often
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stated by the authors to be a legal one [19]. Indirect discrimination is legally

protected in some countries through a specific set of characteristics—age, gen-

der, religion, etc.—though the actual list and scope of the characteristics varies175

from country to country. A further claim made when choosing protected charac-

teristics is that they should be those personal characteristics that people cannot

control, such as to respect their autonomy [20].

2.4. Fairness claims and principles

Claims of “unfairness” of a certain measured inequality assume specific nor-180

mative views of what a fair distribution is. One such view of distributive justice

is egalitarianism, which can be defined as the view that some morally relevant

factor such as health (or harm, or an important resource) should be distributed

equally across individuals or groups [21]. Although the definition of the concrete

distributive principle is itself disputed and several flavours of egalitarianism exist185

[21], the common assumption is that some kinds of inequality in the distribu-

tion of a good or harm are wrong. We will now briefly introduce a few distinct

egalitarian distributive principles that relate to the discussions and definitions

of fairness in the “algorithmic fairness” and “environmental justice” literatures,

close in spirit to this article. We will relate these to robot navigation later in190

the text.

In what is sometimes called “telic” egalitarianism, the view is that all in-

dividuals or social groups should have equal quantities of the good or harm in

question. Therefore, inequality itself, for example through pairwise differences,

should be minimized. As described in [21], this could be written formally in195

a two-group case for example as maximizing u1 + u2 − α|u1 − u2|, where ui is

the utility (or reward) of person i. In the extreme, it could also be interpreted

as the need to enforce the constraint of an equal distribution, e.g. u1 = u2.

Researchers in machine learning assume such a principle when they propose a

loan-risk classifier for example, which predicts defaults equally across clients of200

any race (see experiments in [19] for an example). Basically, it enforces indepen-

dence between a class label (e.g. gender) and a decision (e.g. to deny a loan).
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The principle is often called “demographic parity” in machine learning and is

enforced as a way to ensure a method “does not discriminate” [22]. This is also

the principle implied when, in the work of [23], the authors promote equal avail-205

ability of taxis in all pick-up stations in an automated vehicle routing algorithm,

though what is being equalized in that example are locations and not personal

characteristics of the people involved. Often telic egalitarian arguments are also

used in urban planning to claim that environmental harms such as exposure

to nuclear risk or waste facilities should be distributed equally across space or210

communities [17].

“Demographic parity” is criticized for failing to account for factors that

people can control and that can morally justify inequality. For example, an

algorithm for screening job applications should, according to these critics, only

promote equality among applicants that have similar experience to each other,215

e.g. number of years of education [24, 19]. Such views are in line with luck

egalitarianism, a philosophical theory of distributive justice that says that in-

equality is only unfair when it relates to factors that arise by chance (called

“brute luck” in the original theory of [25]), i.e. factors that are beyond personal

control. It is with such a normative assumption that, for example, [24] uses220

similarity metrics across individuals to make classification “fair” while treating

similar individuals similarly.

In the previous principles the idea is to maximize average utility and avoid

inequality. However, some philosophers argue that what matters is the utility

of the people that are worst-off. One such view was introduced by John Rawls225

in [26]. Rawlsian egalitarianism claims that inequalities are permissible insofar

as they increase the wellbeing of the worst-off. This can be formally modelled

as a maximin: maximize min (u1, u2), although other interpretations also exist

[27]. This is the normative assumption made when ML researchers use such

claims that the performance of an algorithm “is only as good as the performance230

on the worst-performing group” [28]. Yet another fairness definition in the fair

machine learning literature is explicitly inspired by Rawls theory and maximizes

the utility of the worst-off group while constraining the inequality of regression
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error across groups to be under a threshold [27]. One can imagine how such a

principle could be important in autonomous vehicles if we wanted to increase235

access to the most isolated populations of a city—we will formalize this principle

for robot navigation later in Section 4.3.

A similar principle is “sufficientarianism”. Although multiple versions of

the principle exist [21], the common assumption is that fairness implies giving

priority to people below a certain threshold of utility. This is closely related to240

discussions of the right to clean air [17], in environmental justice, or right to

minimum service in public transportation. One particular version of sufficien-

tarianism, from Skorupski [29], explicitly claims that fairness is achieved when

utility is maximized at the same time as enforcing a bound on minimum utility

applicable to all individuals.245

Finally, prioritarianism is the view that “benefiting people matters more

the worse off those people are” [30]. Formally, this can be written as maximize

g(u1)+g(u2) where g is a strictly concave function (e.g.
√
u1+
√
u2). This means

that we maximize the sum of wellbeing over a population, but that wellbeing has

diminishing utility (matters less and less) as it increases. This view is argued250

for in healthcare settings [31], where it can be said that what matters is not

how worse-off someone is compared to others, but in comparison to what he or

she could be (i.e. the degree to which they are in a bad condition) [30, 21].

2.5. Fairness and context

One thing that is clear from the discussions of fairness in the philosophical,255

environmental justice, and technical communities tackling fairness is that dif-

ferent conceptions of fairness are incompatible with each other, and that the

principle to be applied depends on the context or task at hand. Recent pa-

pers also discuss how different fairness metrics are incompatible with each other

[32]—only in very specific cases is it possible to have zero false positives and260

zero false negatives at the same time. Similar impossibility theorems have been

proven in the social-choice (i.e. voting) theory literature as well, proving that

no electoral system can simultaneously satisfy a set of three different fairness
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criteria [33].

In addition, fairness can mean different things to different stakeholders. The265

recidivism prediction case in particular generated discussions about whether

the algorithm was fair or not. On one hand the algorithm did not satisfy equal

false-positive or false-negative rates [12]. But on the other hand, the developers

of the algorithm defended the algorithm because it satisfied predictive parity:

true-positives and true-negatives were equal for white and black defendants [11].270

They argued from the point of view of a decision-maker in the judicial system,

saying that error rates are of “no practical value” when predicting whether a

criminal will recidivate. However, from the point of view of the defendants, it

matters more that they are not wrongly classified as high risk [34].

Yet another finding is that, in some contexts, applying certain strict fairness275

constraints can lead to the worse-off group being left at even worse utility levels,

just for the sake of balancing error rates [27].

And finally, which personal characteristics are morally relevant for the task

at hand also depends on the context. Being fair to the “age” of people might

make sense in some healthcare decisions but perhaps not in the context of hiring280

or ad-targeting. Considering membership to the class “smoker” might make

sense in some healthcare decisions (even though this is also disputed) but not

in hiring or recidivism algorithms, etc. In Section 3.2 we discuss similar issues

of context in robot navigation.

2.6. Fairness trade-offs285

Promoting fairness comes with its trade-offs. For example, enforcing a strict

fairness constraint such as “demographic parity” (i.e. independence between

a decision and group membership) while maximizing task-specific efficiency is

basically constrained optimization [35]. Clearly, achieving the same level of effi-

ciency in a constrained version of an optimization problem can only be done in290

very specific circumstances. Some researchers in the fair machine learning com-

munity explicitly compare the efficiency-fairness trade-offs in different datasets

and fairness metrics by plotting Pareto curves [36]—showing the minimum fair-
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ness constraint violation obtainable for each level of achieved efficiency. We will

in Section 4.4 use these to characterize a robot navigation problem.295

One additional burden of enforcing fairness across groups, discussed by [35],

is the need to collect and use such group-membership data, and of applying

group-specific thresholds when making (hiring, loan, or other) decisions, which

could break core discrimination-related laws.

3. Inequality and fairness in robot navigation300

3.1. Walkthrough rescue-robot example

We will now turn to discussing concepts of inequality and fairness in the

context of robot navigation. As a walkthrough example throughout the paper

we will draw on a hypothetical robot navigation planning problem, which we

describe next.305

Imagine a robot that is deployed in the aftermath of a disaster in order to

find victims that need to be rescued or receive support. This could be a drone

searching for victims of an earthquake who need to be brought to a hospital, or

to receive medical or food supplies. The drone departs from a base station in

the city centre and needs to go back to the same station for re-charging batteries310

and re-loading supplies after a maximum distance is covered. The drone does

several of these trips, although we focus on a single trip in isolation.

We will make the example numerical and grounded in data. Let us say this

happens in a specific city—Oxford, UK—and we use census data to guide the

robot towards high population-density areas to increase efficiency.315

Figure 1 shows Oxford’s spatial distribution of population density, age, eth-

nicity and gender. We will focus on these three variables as they are considered

“protected characteristics” in many contexts, as described in Section 2.3. As

the figure shows, population density is not uniformly distributed in space. Fur-

thermore, it has spatial biases related to age, ethnicity, gender, etc., as we have320

discussed in Section 2.4 when introducing the literature of environmental justice.

Specifically, the city centre of Oxford is densely inhabited mainly by students
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Figure 1: Data used for robot navigation simulations. Population density (top left), percentage

of people aged 20-24 (top right), percentage of people of ethnicity “white English” (bottom

left), percentage of people of gender “male” (bottom right). Higher values are brighter. The

robot’s home base is marked with a green square.

in their 20s, mainly of white English ethnicity. Like other cities [2], Oxford

has neighbourhoods of higher concentration of minority ethnicities and of older

populations than the city centre.325

The consequence for our rescue drone example is the following: planned

paths will have skewed distributions of these personal characteristics. If for

example the drone thoroughly explores the area immediately around the base

station it will find many people because of population density, however most

of whom are young and healthy. These could arguably survive longer without330

drone help, compared to older populations further away from the centre. A
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(a) Age (b) Ethnicity (c) Gender

Figure 2: Distribution of age, ethnicity and gender over the whole city and a robot path. The

path is a naive thorough search around the home-base.

decision- or policy-maker could have similar or other claims with regards to

various personal characteristics.

Let us suppose that the navigation planner is such that it thoroughly explores

the region around the base-station because it is highly populated. Figure 2335

shows this path on top of the city map, as well as the path-wise and city-

wise personal characteristic distributions of age, ethnicity and gender. Figure 2

shows that, as qualitatively seen on the maps, the distribution of age in the

centre (along the robot’s path) is highly biased towards that of undergraduate

students, while the city-wide distribution is considerably more uniform. The340

figure also shows that both the centre and the city as a whole are highly biased

towards a “white English” ethnicity. The centre has an overrepresented “white

other” and “Chinese” population compared to the rest of the city.
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3.2. Issues raised by this example

3.2.1. Indirect discrimination within robot navigation345

The previous example shows that robot navigation paths can be biased in

favour or disfavour of different people, as paths inherit spatial distribution bi-

ases. In particular, the probability of being found by the rescue robot was

strongly correlated with age and ethnicity (i.e. no demographic parity).

In disaster response, such a robot could continue or even reinforce common350

criticisms in disaster response missions: that policies for selecting disaster re-

sponse locations usually benefit particular groups of people [37]. Avoiding such

discrimination explicitly through algorithms could be a way not only to promote

distributive justice, but also to enforce a certain degree of political or commer-

cial neutrality in disaster response (i.e. to make sure that disaster response355

agencies using robots do not favour any particular group of people).

Indirect discrimination will happen in many other robot scenarios as well.

Consider one timely example use case: an autonomous vehicle (AV). If the

AV applies different prices-per-distance depending on expected traffic condi-

tions, this could indirectly penalise people working in certain areas of a city360

and further reinforce inequalities of access to jobs. If the AV applies different

prices-per-distance depending on predicted route risk, such as the probability

of vandalism or theft, then this could penalise people living in high crime-rate

areas. Such schemes could introduce or reinforce social inequalities, similarly to

previous cases of unintentionally discriminatory infrastructure and urban plan-365

ning practices [2].

3.2.2. Inequality can be unfair

While one of the goals of a disaster response robot is to find/rescue/treat as

many people as possible, notions of priority also exist in disaster response ethics

[37]. One accepted principle is to attend to the people most-at-risk first [38, 37].370

This is related to a prioritarian view of distributive justice, that a decision is

fair when it optimizes total utility but some people’s utility is more important

than others (i.e. people with the lowest current “utility”, such as those with low
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health-state, those living in low-quality accommodation susceptible of collapse,

those that have lower chances of survival such as children and older adults,375

etc.). This means that, in our particular example, the fact that there is indirect

discrimination of age, with a bias towards the younger population, is unfair

according to disaster response ethics.

So while our robot example is doing part of a disaster response team’s job—

that of finding as many people as possible—it is not respecting the context’s380

notion of distributive fairness, the notion of who most needs to be found first

in the context of disaster response. Another way to see this is that this specific

algorithm is taking resources away from those that need it most.

This example also raises the issue of identifying in which personal charac-

teristics indirect discrimination is unfair. What about the case where a rescue385

robot finds many people, primarily those at highest risk, but at the same time

is biased towards the white population of the city—since it is slightly closer

to the base station than the neighbourhoods of high minority-concentration?

Should this give rise to concern? According to defendants of affirmative ac-

tion it should, since it reinforces social inequalities that have been ingrained in390

society (through urban policy, housing markets, etc.) for generations.

It then becomes important to provide stakeholders with tools to help identify

these possible inequality outcomes of robot deployment so that better design de-

cisions can be made before robot deployment. One such tool is the methodology

that we use in this paper—of simulating the robot’s deployment and predict-395

ing possible inequalities that can give rise to concerns of distributive fairness.

The example further raises the issue, however, of how one will reach the “final”

choice of fairness principles and protected characteristics to use in an algorithm.

This requires involvement of all stakeholders in the decision process, as well as

other responsible innovation methods as we discuss in Section 5.3.400

3.2.3. Fairness depends on context

As we have seen, in the rescue robot case, fair navigation planning would

require respecting fairness principles of rescue teams such as most-at-risk-first,
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but also perhaps avoiding indirect discrimination. Just as in the discussions of

fairness in machine learning (Section 2.5), the definition of fairness is going to405

depend on contextual factors such as the task and stakeholders. While rescue

robots should potentially focus on finding people that are most-at-risk, fairness

would probably mean something else in other use cases, for example:

1. Autonomous vehicles (e.g. taxis) with location-based insurance or trip

pricing. Because of the close link to public transport, here fairness could410

be more closely related to sufficientarian “minimum service” policies in

transportation (Section 2.4). So fair navigation planning would in this

sense be to provide guarantees that paths taken by AVs provide fair levels

of waiting-times across all areas of a city. In addition to that the personal

characteristics to protect and equalize could be related to other factors415

different from the rescue case, such as income level or crime-rate. One

could argue that pricing should not be correlated with area crime-rate

itself, even if it correlated with risk estimates for insurance purposes, as

this would lead to the double punishment of users—of having to pay extra

on top of already having to go through the exposure to high crime risk.420

2. Hospital mobile service robot. Imagine this robot visits different areas

of a hospital while guiding patients and visitors to their destinations, or

executing tasks on their demand. Depending on how much time a robot

spends in each of a hospital’s waiting rooms, corridors and patient rooms,

people will have more or less chance of using the robot’s services. In425

this context, hospitals most often have clear criteria of patient priority

based on their condition [39], and mobile robot services in a hospital could

reflect these as well. In this case, fairness specifications could involve

guaranteeing relative degrees of service, for example: guaranteeing that

robot paths service M times more patients of priority 1 than those of430

priority 2. Alternatively, that male and female patients are given the

same amount of attention.
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3.2.4. Robots must face dilemmas that humans already face

Thinking about the fairness issues related to disaster response locations is

not something new about rescue robots, but an inherent concern of disaster435

response itself. For example, discussions and claims of unfairness are raised re-

garding disaster response hospital locations when they favour people of specific

backgrounds, sometimes politically or commercially favourable to the country

backing the response [37]. Principles such as most-at-risk first [38, 37] are pro-

posed within the disaster bio-ethics community to solve a fairness problem in-440

herent to the task and context. Thus, the rescue robot example also shows that

when robots are used to solve problems currently solved by humans, they must

face similar dilemmas currently faced by human decision-makers. In the hospi-

tal robot example as well, hospital workers already face ethical questions about

how they spend their time in the physical environment of a hospital. The ques-445

tion is then how to operationalize similar fairness sensitivity when automating

a service with a mobile robot.

Of course, new fairness issues may arise with the introduction of automa-

tion. For example, in the hypothetical example of an autonomous vehicle with

location-based insurance or trip pricing, the indirect discrimination issue is450

partly new in the way it is personalized to a person’s travel needs or routines.

However, concerns of fairness are already an important part of the discussions

taking place regarding car insurance, and insurance providers are required to

meet certain (loose) criteria of fairness in their policies, such as avoiding direct

discrimination based on certain protected characteristics [40].455

4. Designing fair robot navigation systems

4.1. The objects of fairness in navigation: qualitative definitions

In this section we try to list the kinds of things we might want to be fair

to in robot navigation. We distinguish between different objects of fairness

considerations in navigation:460
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4.1.1. Locations

Being fair to locations (e.g. hospital rooms) means that we care about which

locations will be visited by a robot: in particular, how often they will be visited,

either in absolute value or in comparison to other locations. We refer to location-

related objects/variables technically as “state visits”, since the term “state” is465

frequently used to formally describe a location of the robot in motion planning

literature. The work on formal verification and formal methods for robotics has

traditionally focused on this kind of variable [41, 42, 43], particularly in logical

events indicating whether a region is eventually visited, or visited infinitely

often, by a plan.470

4.1.2. Protected characteristics

The discussions reviewed in Section 2 reveal that there is often a need to

be fair to personal characteristics (e.g. age or health) of the people affected by

algorithms. And as we saw in Section 3 with the rescue robot example, inequal-

ities across protected characteristics will also be part of the outcomes of mobile475

robot deployment. The other objects we consider here are, therefore, morally

relevant protected characteristics. Being fair to protected characteristics, in the

context of navigation planning, means that we care about the distribution of

protected characteristics of the people found/interacted-with along the robot’s

path. We refer to these technically as “state features”. In each location lie a480

certain (deterministic or stochastic) number of people, and the distribution of

their protected characteristics will be part of the “features” of that state.

4.2. The objects of fairness in navigation: formal definitions

Let us assume our robot’s state-space is S and for simplicity a path ζ is a

discrete sequence of N states ζ = s1, ..., sN , where si ∈ S,∀i=1,...,N . We consider485

the state-space of the robot is divided into mutually-exclusive R regions πi ⊂ S,

∀i=1,...,R. A state-feature is a random variable A ∈ {A1, ..., AC} (e.g. for person

gender, C = 2, A1 =male, A2 =female).

Formally, the objects of fairness we have just introduced can be written as:
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• State visit counts: c(πk) =
∑N
i=1 1[si∈πk], where 1 is an indicator function490

equal to 1 when the subscript condition is true and 0 otherwise.

• Eventual visits (a location is eventually visited by a plan, at least once):

♦πi, where πi here represents the logical event of a robot being present at

region πi, as used in Linear Temporal Logic [44].

• Infinite visits (a location is visited infinitely often by a plan): �♦πi.495

• Distribution of A over the path: pζA, where
∑
a∈{A1,...,AC} p

ζ
A(a) = 1. To

use a notation closer to the machine learning literature, we are interested

in the distribution P(A = Ai|Y = 1), where Y = 1 is the event that a

person is found along the path and A = Ai the event that a person’s

protected characteristic is Ai. In a two-class gender example, if the user500

has access to data of the expected number of male Em and female people

Ef present at each location in a map, then:

pζA(Am) =

∑N
i=1Em(si)∑N

i=1Em(si) + Ef (si)
, (1)

pζA(Af ) =

∑N
i=1Ef (si)∑N

i=1Em(si) + Ef (si)
.

4.3. Specifications of fairness in navigation

Fairness principles can be implemented as optimization problems with costs

and constraints on the variables just described.505

The form of fairness currently studied in the planning literature is LTL fair-

ness. These are logical specifications on state visit events, such as “if region

1 is visited then region 2 must also eventually be visited”, or “if 1 is visited

infinitely often then 2 must also be”. The first case could be specified in Lin-

ear Temporal Logic (LTL) by �(π1 ⇒ ♦π2) which is usually called “liveness”510

[44, 41]. The second specification is called “strong LTL fairness” and is repre-

sented by �♦π1 ⇒ �♦π2. These definitions can be seen as a person-agnostic

egalitarianism equalizing visits over sub-sets of locations. However, as we have

seen there are other notions of fairness that may apply to navigation problems.
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Here we collect from the discussions in Section 2.4 (and translate into the robot515

navigation domain) other fairness specifications relevant to navigation:

• Demographic parity. In the context of navigation this egalitarian principle

implies that the event of a person being found along a robot’s path is

independent from group membership (i.e. a protected characteristic A).

Formal: A constraint pζA = pA, which enforces the path-wise distribution520

of features to be equal to the population-wise distribution. Equivalently

and closer to the machine learning definition P(Y = 1|A = Ai) = P(Y =

1|A = Aj)∀i,j .

• Rawlsian egalitarian fairness: maximizing utility of the worst-off, i.e. max-

imizing the visit counts of the least-visited region, or the probability of525

being found for the least-likely group. Formal: For state-visits, the goal

of the planner is to maximize mini=1,...,Rc(πi) Formal: For state-features,

the goal of the planner is to maximize mina∈{A1,...,AC}p
ζ
A(a).

• Sufficientarian fairness (1): Requiring a minimum number of visit counts

at specific regions (e.g. “minimum service” constraints in a hospital).530

Formal: A bound-constraint of the type c(πk) > φ where φ is a user-

specified threshold.

• Sufficientarian fairness (2): Requiring a lower-bound on the relative num-

ber of visit counts (e.g. minimum fraction of attention given to a specific

room) or the probability of each group being found by the robot (e.g. all535

age groups much have at least probability 0.1 of being found). Formal:

For state-visits, a constraint c(πk)∑
j∈J c(πj) > φ, where J is a user-specified

ratio and J a user-specified set of regions Formal: For state-features, a

bound constraint pζA(a) > φ on all classes a ∈ {A1, ..., AC}.

• Prioritarian fairness: Maximizing the priority-adjusted utility of visiting540

locations or groups. Formal: For state-visits, the goal of the planner is to

maximize
∑
i=1,...,R g(c(πi)) where g(.) is a strictly concave function such

as
√
. Formal: For state-features, the goal of the planner is to maximize
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∑
a∈{A1,...,AC} g(pζA(a)) where g(.) is a strictly concave function such as

√
..545

• Affirmative action: Enforcing a desired distribution of states-visits (e.g.

that room of priority 1 is visited M times more than room of priority 2)

or state-features (e.g. ratio of younger and older people found along the

planned path to be as close as possible to 20/80). These are closely related

to affirmative action policies in university admissions and public offices,550

hence the name we choose for them. However, note that this definition is

general enough to encompass demographic parity—which is equivalent to

a preference towards the distribution of the whole population. Formal:

For state-visits, a constraint c(πk)∑
j∈J c(πj) = φ, where φ is a user-specified

ratio and J a user-specified set of regions. Formal: For state-features,555

a constraint on the distance between the path-wise distribution pζA and a

desired distribution Q, e.g. DKL(pζA||Q) = 0.

Importantly, note that specifications based on state-features (i.e. distribu-

tions of protected characteristics) are non-Markovian, that is, they lead to a

problem without optimal sub-structure. To see that this is the case, notice that560

the reward of moving from a state si to one of its neighbours will depend on

how the robot reached si (what is the distribution of the features of interest

at the moment). Optimal sub-structure is a requirement for typical state-of-

the-art dynamic-programming based methods such as A* and value-iteration-

based approaches to planning. This fact introduces a new need to research565

non-Markovian planning methods, and makes distribution-fairness definitions

the most technically interesting.

To deal with non-Markovian cost functions in dynamic-programming based

methods, some techniques have been proposed. Similarly to what is done in

[45] for time variables, distribution-related data itself could be added as part570

of the state-space (e.g. the robot state is now location X, total number of

people visited Y, feature ratios Z), though such methods typically do not scale

well with state-space dimension. Another more straightforward approach is to
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build a proxy planning problem with cumulative costs that tries to achieve a

similar objective. In Section 4.4 we see how this method fares against solving575

the original (not approximated) problem.

In the experimental part of this paper we will focus on fairness to protected

characteristics, or state-features, for two reasons. One is the technical difficulty

it poses to existing methods. The other is its relevance to topics of “indirect dis-

crimination” on protected characteristics. As we have discussed in Section 2.3,580

such considerations are both the object of legal regulations [46] and the topic of

analysis and active debate in the context of algorithmic bias and discrimination

[13, 19].

4.4. Developing a fair navigation planner

Now that we are equipped with a framework of fairness variables and specifi-585

cations within robot navigation, we are ready to analyse and discuss its applica-

tion to existing techniques for navigation planning. With a particular example

in hand, such as our rescue robot use case, we can begin asking important

questions such as: “what is the trade-off between fairness and efficiency in our

scenario?”, “is it possible to achieve fairness strictly?”, “is our fairness speci-590

fication counter-productive?”, “can traditional navigation planning techniques

be applied to our problem?”. We will now try to answer such questions for our

particular rescue example and use it to generalize. For the sake of guiding the

discussion we will assume that, at a particular point in time in the stakeholder-

involved design process, we wish the probability of a person being found by a595

robot to be independent of the person’s age, i.e. demographic parity. This could

be seen as an attempt to compensate for the large spatial segregation of the city

in terms of age (i.e. very young or gentrified neighbourhoods).

4.4.1. Fairness may be infeasible, requires trade-offs

To gather insights of the feasibility and trade-offs of enforcing demographic600

parity in this hypothetical scenario, we estimate the Pareto-front of the two

objectives: fairness (distance to perfect demographic parity) and efficiency
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Figure 3: Pareto-curves showing the trade-off between the total population found along the

robot’s path and the distance to the desired distribution of age.

(number of people found). For this purpose we use a state-of-the-art Pareto-

estimation method adapted to navigation planning, which we describe in detail

in the Appendix (Section 7.2).605

Figure 3 shows this Pareto-front. Each point along the curve is a different

path of different fairness and efficiency. The graph shows that to decrease

unfairness, which in this case means the distance to perfect demographic parity,

it is necessary to reduce the total population found. In our example, this is

because older people also live more scattered and further away from the centre610

than the younger population. It also shows that it was impossible for the method

to find a path of strict fairness, i.e. where demographic parity is satisfied exactly,

since the curve does not reach zero. This is understandable because, firstly,

extreme luck should exist for a subsample of the city to exhibit exactly the

same statistics as the city as a whole. Secondly, Pareto-front estimation methods615

such as the one used here are not guaranteed to find global minima since that

would require exhaustively searching all possible paths within the map, which

is unfeasible for the size of our problem.
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Figure 4: A thorough search path around the home-base (left) and the two extreme Pareto-

optimal paths (middle and right).

Figure 4 shows the paths corresponding to the two extremes of the Pareto-

front (i.e. lowest and highest unfairness). The method obtains paths with620

lower unfairness for the same amount of population found, when compared to

a thorough planner focused on the city centre. The difference is considerable:

more than 50% of the people found by the thorough planner are aged 20-24,

while the city-wide percentage is around 15%. For our planner this number is

between 17 and 22%. The histograms in Figure 4 show that both extremes of625

the Pareto-front capture a population which is close to the city-wide distribution

(i.e. close to independence). The higher-unfairness extreme can actually find

a slightly higher population than the thorough planner, at considerably lower

unfairness. To achieve this, the planner’s paths move through highly populated

areas of both younger and older populations, scattering away from the base630

position more than the thorough planner.

In this situation, a stakeholder such as a decision-maker, emergency respon-

der or policy maker could use the Pareto-fronts themselves to make a more

informed decision about efficiency and fairness of the response, in a way that
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reflects the priorities and values at play in the specific situation. The decision-635

maker could select one of the solutions within the Pareto and be comfortable

that they represent approximately optimal trade-offs of the objective (though

not globally optimal as already discussed). The choice of solution along the

Pareto-front could also be made according to the resources available to the base

station at each moment and expected needs of the different kinds of population.640

4.4.2. Current planning methods provide few guarantees

The method we used to generate these paths is not a traditional one in robot

navigation: because the focus in robotics is usually not on trade-off estimation,

and because faster methods with optimality guarantees are preferred. However,

such traditional methods (e.g. A* with an admissible heuristic) require cost645

functions to be Markovian, i.e. the cost over a path to be equal to the sum

of per-state costs, and state-feature definitions are not decomposable in such a

way. So even though methods with optimality guarantees could also be used

here, they would be optimizing a proxy function of fairness, i.e. would guarantee

that they would find the path of maximum fairness but where fairness is not650

the actual definition we care about.

To analyse the results of applying such a traditional planner with a Marko-

vian approximation of fairness, we conducted a new experiment. We approxi-

mated the fairness over a path by the fairness within each cell summed over the

whole path:655

f̂unfairness(ζ) :=
∑

(s)∈ζ

funfairness(s), (2)

This way, our problem becomes solvable with traditional state-of-the-art search-

and sampling-based planning methods [47, 48] with guarantees. The danger here

is that promoting each cell’s feature distribution to be as close as possible to the

city’s distribution could be too restrictive. It could lead to avoiding minority re-

gions because they are too different from the city’s average. Figure 5 shows the660

original Pareto-front and age distribution, and those obtained by optimizing the

proxy problem. All graphs and unfairness metrics shown are those of path-wise
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(a) Original age-unfairness problem (b) Cumulative-cost approximation

Figure 5: Comparing the original age-unfairness problem (a) with the result of solving a

proxy problem which minimizes approximate cumulative-costs of per-cell-unfairness (b). The

histograms in the bottom correspond to the highest-population extreme of the Pareto front.

and city-wise distribution distances, the only difference is in the cost function

that was used to arrive at these results. Notably, the cumulative-cost approx-

imation leads to twice higher unfairness (i.e. distance to perfect demographic665

parity) related to a bias towards the younger population. The high-population

extreme of the front finds a similar number of people (around 33000), though

the low extreme is lower in the case of the original cost function. These differ-

ences could be more or less pronounced depending on the problem, and it could

turn out to be reasonable for a decision- or policy-maker to accept these degrees670

of unfairness. In that case, other state-of-the-art methods using cumulative-

cost approximations could be used, perhaps with some formal or optimality

guarantees. Still, there would be a danger then, that problems where this ap-

proximation turns out problematic would go unnoticed. Additionally, the use

of traditional methods with formal or optimality guarantees on surrogate func-675

tions could lead to undue trust in the fairness of the system, perhaps specially

27



because of user knowledge of those guarantees. Therefore, we argue that the

use of any fairness-aware planner should always go together with visualizations

of fairness and other tools that promote responsibility.

To summarize, current navigation planning methods either provide optimal-680

ity guarantees for the wrong metric, or provide no guarantees on the desired

fairness metric. Optimality guarantees are an important feature that allows

technology users to be sure that the technology does what it is meant to—

optimize fairness and efficiency as much as possible. Not having these guaran-

tees means that the users do not know how much efficiency and fairness they685

are potentially losing in each use.

4.4.3. Fairness specifications can be counter-productive

To evaluate the possibility of counter-productive fairness constraints, con-

sider an egalitarian view that all classes of a protected characteristic should

have equal probability of being present in the robot’s path. Figure 6 shows the690

result of optimizing for this uniform-distribution affirmative-action on age and

ethnicity. The minimum achievable distance to strict “fairness” is very high in

this case: at least 0.46 on age and 0.7 on ethnicity. While the majority classes

were considerably lowered, the outcome is still very far from the preference. In

other words, in this case the city’s inequality is just too high for a uniform dis-695

tribution of characteristics to be achieved. This means that to achieve a certain

degree of “fairness” may require an extreme decrease of efficiency if the metric

is not well chosen. Now consider a similar policy applied on gender classes.

Figure 7 compares the largest-efficiency result of promoting demographic parity

on gender, with the largest-efficiency result of promoting a strict-equality affir-700

mative action (i.e. a 50-50% ratio). The figure shows that strict-equality leads

to lower utility for both male and female classes. In other words, all classes were

made worse-off just in order to find higher equality solutions.

Again, the use of fairness-related visualizations such as distributions and

trade-offs is important to inform decision-makers about the impact and effec-705

tiveness of the technical choice. Furthermore, this example shows the advantage
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(a) Uniform age target (b) Uniform ethnicity target

Figure 6: The hopelessness of achieving some target distributions, in this case “fair” uniform

distributions. Note that in (a) the age ranges for each bar (labels on histogram x-axis) are

not of constant size, which is why the distribution does not look flat.

of our methodology, of simulating system deployments implementing different

fairness definitions, in order to better evaluate and predict their results. Finally,

the example suggests that the process of specification—of selecting a definition

of fairness—could be the product of an iterative design and validation process.710

4.4.4. Intuitive understanding

The particular metric we have used for “unfairness” in Pareto-curves—

distance to the fair distribution—also raises questions about which metrics are

most intuitive for stakeholders to evaluate the degree to which a distributive

principle is satisfied. In this example we used Jensen-Shannon distance between715

distributions, but such a metric could arguably be considered unintuitive. Other

options could be the maximum violation of the fairness constraint as used in

[36]. In our example this could amount to evaluating the maximum pairwise

difference of the probability of being found conditioned on group membership
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Figure 7: The implementation of certain fairness definitions can be counter-productive, i.e.

achieve more equality at the cost of less utility for every group. Left: promoting demographic

parity on gender. Right: promoting affirmative action (i.e. a 50-50% ratio). The numbers

over each bar represent the number of people found along the robot’s path.

(i.e. |P(Y = 1|A = Ai)− P(Y = 1|A = Aj)|). The best metric would probably720

depend on the fairness specification itself and should be the subject of research

undertaken in collaboration with social scientists and Human-Computer Inter-

action researchers. We discuss in greater detail in Section 5.3.

4.4.5. Design is an iterative process

A further issue that the rescue robot example raises is that there are possibly725

multiple personal characteristics that a user or decision-maker cares about and

would like to pay respect to. These may not be obvious from the onset of

robot deployment. For example, a disaster response team might program a fair

navigation planner to respect a certain health and age-related feature, only to

later find out they have a bias towards high-income neighbourhoods that they730

would like to avoid. Alternatively, optimizing for fairness in one characteristic

may introduce new biases in the paths that are again morally relevant.

Figure 8 illustrates part of these ideas. We show the result of optimizing

for ethnicity-fairness, both in terms of obtained ethnicity distributions and the

resulting distributions of the (unconsidered) characteristics of age and gender.735

The figure shows that this path is still biased in terms of age and gender. The

visualizations make this fact clear, however, and could trigger a stakeholders to
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(a) Distribution of ethnic-

ity over path (optimized).

(b) Resulting distribution

of age over path.

(c) Resulting distribution

of gender over path.

Figure 8: Conflicts between fairness objectives. When minimizing ethnicity-unfairness, the

resulting distributions of other characteristics may (still) be undesired.

re-consider what the objectives of the planner should be.

Part of the specification process will hence be in the discovery of what values

matter for (and are affected by) the application at hand. This process can740

only succeed if there exist value-sensitive tools [49] that identify or support the

identification of these issues. Our methodology in this paper was to develop a

resource for developers of applicable formal definitions that can be simulated to

guide discussions and anticipate issues before deployment, at the early stages of

development.745

5. Discussion

Thus far we have given an overview of concepts of responsible innovation,

inequality, discrimination and fairness in different literature (Section 2), and

related those to robot navigation through an example use case (Section 3). We

have claimed that indirect discrimination is likely to arise in navigation, and750

that robots will have to deal with (or allow humans to have control over) similar

fairness-related questions that currently arise in non-automated instances of the

navigation problems. We demonstrated the use of a fairness-aware algorithm

on the rescue use case, and raised some issues regarding the development and

deployment of such algorithms.755
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5.1. Related work in planning

The ethical and social focus of this paper in planning and navigation is in

line with other recent work in socially-aware motion planning. For example,

[50] selects robot motion waypoints in a way that is fair to different human

tele-operators, [51] considers the violation of personal space of closeby pedes-760

trians, and [52] considers user privacy within algorithms for vehicle routing.

While in this paper we focused on optimizing fairness and task efficiency objec-

tives, motion planning usually deals with optimizing objectives such as energy,

time, safety, etc. Multi-objective approaches to motion planning already ex-

ist and include the use of weighted-sum cost aggregations [53, 54] or obtaining765

Pareto-curves that optimally trade-off the different objectives [55, 56, 57, 45].

Pareto-front estimation has been applied to both search [55] and sampling-based

[56] motion planning, as well as formal methods for planning in Markov Decision

Processes [45] and reinforcement learning [57]. Other relevant work is that of

[58], which applies different distributive principles to multi-objective planning770

such as elitist and Rawlsian egalitarian principles. In this paper we also use

Pareto-optimization, both to obtain optimal trade-offs and to allow for an intu-

itive understanding of those trade-offs to stakeholders through visual inspection

of the Pareto-fronts.

5.2. Developing fair navigation planners responsibly775

As our walkthrough example has shown, building “fair navigation planning”

algorithms in a responsible way certainly requires more than optimizing a fair-

ness metric. Based on the previous discussions and example-based observations

we now sketch what we believe the ethical development and deployment of fair

navigation algorithms requires. We use a set of principles common across the780

recently proposed ethical AI frameworks [5] to guide the ethical requirement

themes: transparency, privacy, autonomy (in the philosophical sense of humans

being in control) and fairness.
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5.2.1. Transparency: Providing an understanding of inequality and trade-offs

Planners should provide an intuitive understanding, through appropriate785

visualizations, statistics, or metrics, of the fairness characteristics of navigation

plans. From a Value-Sensitive-Design perspective [49], it is important that our

tools provide us with information that lets us understand and control the impact

of the technology in terms of the values of interest (fairness and others). In terms

of algorithm and interface design we should not just be turning a fairness feature790

on and off, but providing data and options so that a stakeholder can correctly

understand and act on the fairness dimension of the problem. Planners should

be equipped with data and tools for the analysis of fairness across multiple

variables and specifications, in order to allow impact and fairness-related issues

to be spotted by stakeholders.795

Legibility or intuitiveness of the visualizations and the metrics is important

as well. For example, in this paper we used Jenson-Shannon distance of dis-

tributions as a way to measure the degree to which the fairness definition was

satisfied. Alternative metrics such as the maximum violation of the constraint

(e.g. maximum difference of the probability of being found across group mem-800

bership) have been used in the literature [36], and the choice of such metrics

could have an important role in transparency and understanding of trade-offs

and predicted outcomes of system deployment.

5.2.2. Human autonomy: Providing control over fairness and efficiency trade-

offs805

In order to allow humans to responsibly use such tools, they need to be able

to understand and control the trade-offs between fairness and other task objec-

tives. This will require the use of visualization and human-in-the-loop design

features. For example, Pareto-curves of the different objectives can serve as

interesting visualizations and decision-aids. Some Pareto-estimation techniques810

already exist for both generic optimization problems [59, 60] and planning prob-

lems [45], however their computation is still slow, sub-optimal or challenging

with the increase of the number of objectives. Research to improve this reality,
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and research on alternative visualization and decision-making tools is needed

to make fair navigation planning techniques useful and reliable. Additionally,815

users should be able to interface with the planning methods in order to include

considerations of relevant expert knowledge, such as adding intermediate goals,

biasing paths to certain solutions, or adjusting estimates of risk and utility (e.g.

building damage or population density in the rescue case).

5.2.3. Privacy: data collection, security and inference820

Promoting state-feature fairness in navigation, such as demographic parity

or other, requires data on the distributions of these features themselves. This

comes at the cost of having to gather such data, but also of potential privacy

issues within the collection, analysis or security breaches of the data. Data

leaks could come not only from security breaches but also correlations within825

observed robot behaviour. Ideally, paths taken by a mobile robot should also

not reveal information about the personal characteristics of the people in the

city or respective deployment location. This should be true even if the formal

definition of fairness used by the robot is known by the public for the sake of

transparency. This concern for privacy in motion planning has been recently830

discussed in technical papers such as [52], and fair planners will likely require

to go hand-in-hand with such privacy-assuring methods.

5.2.4. Verifiability: Providing formal and optimality guarantees

Users may need proof that the system will work as intended, both in terms

of achieving the fairness specification that is asked, and of being as efficient835

as possible. Formal methods and probabilistic model checking are useful tools

that can provide guarantees on the satisfaction of logical specifications by a

planner [61, 45]. Such tools could be used to provide fairness guarantees in the

form of a probability of satisfying a fairness constraint, bounds on the distance

between a predicted distribution and desired distribution of state features, etc.840

However, how to efficiently satisfy non-Markovian fairness requirements with

such methods is still an open problem, especially since most of these methods
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do not scale well with the size of the state space.

Sub-optimality and approximation guarantees are also important: users need

to be confident on the degree of error in fairness computations and the path845

optimality. While some planning methods already provide sub-optimality guar-

antees [47], they also require the use of cumulative cost functions. An analysis

of error and sub-optimality bounds introduced by cumulative approximations of

the original cost functions will also be a necessary part of responsible algorithm

development.850

5.2.5. Fairness: Including realistic fairness models within the planning objec-

tives

Fairness with respect to locations cannot be fulfilled if there are missing

locations in a map, and similarly for fairness on protected characteristics. For

fair navigation planning systems to be reliable, data and models of the relevant855

fairness features will be required. For example, population statistics over a

map, or accuracy of prediction algorithms and their biases should be available

to the planning algorithms. Some of these data already exist: census data

can be detailed in some countries, and many state-of-the-art machine learning

techniques are open-source. Some data do not currently exist: for example,860

usage and population statistics of hospital corridors and rooms, computer vision

datasets with annotated personal characteristics, etc. The performance of fair

navigation planning algorithms will strongly depend on the quality of the data

and models used during the planning process, and these will be a crucial part

in the development of any such algorithm.865

As we have seen, good resources of fairness models and formal specifications

are important to be able to operationalize fairness as well as anticipate issues

and design choices early in the development stage.

5.3. Research agenda

The previous discussion implicitly defines a research agenda for fair naviga-870

tion planners in particular but also for conceptualizing fairness, and for respon-
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sible innovation methods.

For better transparency of autonomous systems in general, and mobile robots

in particular, we need methods for statistically-sound detection of inequality, as

well as visualization of inequality and its trade-offs. For better human control,875

we need methods for combining user input with traditional motion planners.

These should probably provide not only a fairness “knob” but also allow de-

signers and users to anticipate issues, add more considerations and experiment

with design options and simulated outcomes to increase an understanding of

the problem. We need methods for privacy-preserving navigation planning [52],880

since guaranteeing fairness might require access to private information as we

have discussed. For optimality and verifiability we need methods for either

globally optimal solutions or (sub-) optimality guarantees on non-Markovian

costs and constraints.

There are also social questions to ask about the fair design of mobile robots885

and autonomous systems. There is a need to investigate different ways to present

robot deployment simulation results (such as the inequality plots we use in Fig-

ure 2), not merely in terms of static representations but in ways that animate the

experiment, for example through walkthroughs [62], simulations [63] or quasi-

naturalistic experiments [64, 65]. Indeed, the use case considered here suggests890

a novel programme of work involving a collaboration between social scientists

and artificial intelligence researchers. For a number of years, social scientists

have contributed to system development by undertaking distinct activities such

as eliciting requirements and values from users, typically drawing from well-

established methods such as semi-structured interviews and focus groups. With895

complex systems, such methods of elicitation may be problematic, as potential

users and stakeholders have few resources to be able to assess putative tech-

nologies and their consequences. It may need a closer collaboration between

social scientists and computer scientists to develop new methods for elicitation

and engagement that allow participants to reason about and discuss the con-900

sequences of emerging technologies. This requires innovation in both computer

science and social science methods.
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This paper also raises fundamental philosophical questions about the ethical

design of autonomous systems. What are the boundaries of what humans and

machines should be responsible for in the design and execution of autonomous905

systems? When is affirmative action through robot behaviour acceptable? Does

the “protected characteristic” framework make sense given the arbitrariness of

the “characteristics” and the (sub-)categories that are chosen for the character-

istics? For example, the census of the Office for National Statistics in England

includes “white British”, “white Irish”, “white Gypsy”, “white other” as sepa-910

rate ethnicity categories, which raises questions of conceptual borders and the

reasonableness of being fair to these specific categories (e.g. does demographic

parity over these specific categories even make sense?). Finally, what does the

field of meta-ethics have to say about algorithmic fairness and what can it con-

tribute with operationally?915

5.4. Methodological contribution

In this paper we have taken a different approach to considering ethical con-

cerns with respect to fairness. Rather than set out a set of principles or raising

a set of questions regarding equality or distribution, we have sought to exam-

ine fairness by unpacking the definitions and seeking to characterize fairness920

further. This has not been undertaken with the aim of seeking a sole, fixed,

definition, or to stipulate what is “meant” by fairness, but rather to serve as

a resource for development of systems. In the case of robot motion developing

formal definitions and simulations reveals concrete examples of where certain

decisions would be indirectly discriminatory. The examples we provide also sug-925

gest the design decisions that need to be made, for example with respect to the

trade-offs with privacy or with efficiency. Hence, the development of a model

could be seen as a useful method for anticipating the risk and consequences of an

innovation, consistent with the principle of anticipatory governance in RI. How-

ever, rather than only reflecting on general principles of fairness or requesting930

stakeholders to anticipate the consequences of an innovation, the formal models

and simulation-based investigation provide a more solid foundation on which to
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initiate discussions that can anticipate the consequences of an innovation. So,

in the case of robot navigation it is possible to provide examples of particular

decisions made in the design of an algorithm and their consequences which can935

be a resource in stakeholder workshops where potential users, developers, policy

makers and members of the general public seek to anticipate the implications of

a technological innovation. Modelling, formal specification and simulation can

help provide a more systematic and informed foundation to such discussions,

prior to any development taking place.940

Responsible innovation is an approach that is increasingly becoming em-

bedded within the processes for the procurement of research. Although the

approach addresses all kinds of innovation it has tended to focus on research

that is at its earliest stages. However, recently, particularly through initiatives

by research funders seeking to mitigate against the risks of technological in-945

novation, there have been measures to address a wider range of developments,

particularly where it is not immediately apparent that there are ethical or so-

cietal concerns. The case considered in this paper reflects this progression: a

seemingly trivial or mundane matter such as how a robot moves and navigates

through an environment can invoke ethical concerns, such as those relating to950

fairness. To meet the requirements of responsible innovation, developers need

to engage with potential stakeholders. Typically, this is done through activities

such as workshops where ethical and societal concerns are discussed. However,

it is a challenge for stakeholders to anticipate the nature and consequences of

a technology that has not been designed, let alone implemented. We require955

novel methods from both technology innovators and social scientists to sup-

port this engagement. Novel ways of providing resources for anticipating the

consequences of a new technology, such as those through formal specification,

modelling and simulation may serve as methods for providing resources for such

collaborative and participative activities.960
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6. Conclusion

In this paper we explored the concept of fairness in the seemingly mundane,

value-neutral, technical problem of robot navigation. We showed that there

is a fairness dimension to robot navigation, using a walkthrough example of a

rescue robot and brief comparisons to an autonomous vehicle and hospital robot965

use case. As we have discussed, the way robots move naturally changes the

likelihood that certain people have of benefiting from access to the robot. This

inequality, as well as structural inequalities (e.g. age-, race- and income-related

spatial segregations in urban areas) can give rise to concerns of distributive

justice. We discussed how mobile robots will have to face similar dilemmas that970

humans already face and how the notion of fairness will depend on the context.

We then sought to build a resource for developers, of formal definitions, socio-

technical challenges and design choices that have to be thought through when

implementing fair navigation planners. We defined two kinds of fairness objects

in the context of robot motion: state-visits and state-features. The first deals975

with being fair to locations in terms of the number of times they are visited. The

second deals with visiting locations in a way that achieves a desired distribution

of protected characteristics of the people along them (e.g. age, income). We

then applied multiple theories of distributive justice to our navigation problem

and obtained a collection of formal definitions. These definitions can be used to980

simulate robot deployment outcomes, ground discussions of fairness and design

across multiple stakeholders, and anticipate issues. We showed that fairness-

aware navigation planners will involve efficiency-fairness trade-offs, that their

design should be an iterative process of understanding the fairness issues of the

context at hand, and that current planning methods have downsides that need985

be addressed (i.e. non-Markovian or lack of formal guarantees).

The methodology of the paper was to focus on a particular system to bring

out these design choices and challenges through deployment simulations. We

discussed the requirements for responsible design of such systems and the ad-

equacy of the approach as a general method of Responsible Innovation that990
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anticipates ethical issues such as fairness and helps ground discussions and un-

derstanding of the problem by stakeholders.

This paper also sets the ground for a new research field of fair planning.

Several challenges still lie ahead. Part of those are technical challenges of de-

signing efficient, interpretable, formally verifiable and optimal methods to solve995

non-Markovian fairness-aware planning problems. Another part is related to

responsible innovation and value-sensitive design through appropriate analysis

and visualization tools. Finally, the ethics of risk imposition [66], and the so-

cial and ethical implications of apparently innocent behaviour of autonomous

systems are important topics to further explore. Such reflections are necessary1000

for us to better align our robots with our values, and to better anticipate the

impact autonomous systems have in society and our lives.

7. Appendix

7.1. The rescue-robot walkthrough example

Our analysis uses the openly-available data of the 2011 census of the Office1005

for National Statistics in England, which maps over 400 variables among which

population density and age distribution. We used the scripts from [67] to collect

this data. In this paper we focus on 3 variables: age, ethnicity and gender.

It is unclear in the dataset which reasoning was used for selecting the cat-

egories. For example, the age categories are not uniform (some categories en-1010

compass only a couple of years, e.g. 16-17, while others are much larger, e.g.

75-84).

We locate the hypothetical base station of the robot in the city centre’s fire

station (Rewley Road Fire Station). To simulate a thorough planner that starts

exploring from the base station, we use a square region of 400 cells (approxi-1015

mately 1km2).

7.2. A fairness-aware human-in-the-loop planner

We consider a motion planning problem on a state-space S and paths ζ =

s1, ..., sN where si ∈ S, ∀i=1,...,N . We are interested in optimizing both an
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efficiency-related function fefficiency(ζ) (e.g. total population found along the1020

path) and a fairness-related objective function funfairness(ζ).

We assume formal specification of fairness of the “affirmative action” type

(Section 4.3), although the algorithm could equally be applied to any of the other

specifications. We further assume a user or stakeholder provides a reference

(desired) distribution Q for the characteristic of interest. In our experiments1025

we set Q = pA (i.e. the city-wide distribution of age), which is equivalent

to demographic parity. We compute the degree of (un)fairness as the Jensen-

Shannon (JS) distance between the path-accumulated characteristic distribution

pζA and the reference distribution Q:

funfairness(ζ) := fJS(ζ) =

√
DJS(pζA||Q), (3)

where1030

DJS(P ||Q) =
1

2
(DKL(P ||Q) +DKL(Q||P )) , (4)

and where DKL(P ||Q) is the Kullback-Leibler divergence between P and Q.

The JS distance will be 0 if the class distribution along the path is exactly as

desired, and 1 if the exact opposite.

To estimate trade-offs we use Pareto-front estimation in a multi-objective

setting. An example Pareto-front is shown in Figure 3. It consists of a set1035

of points that cannot be improved upon in one objective without making the

other objective worse off. The use of Pareto-fronts allows to directly optimize

fairness and efficiency trade-offs, while at the same time providing visualizations

for problem intuition. Pareto-front estimation also provides a degree of human

control over the algorithm, since each point of the Pareto-set will correspond1040

to a different path, and a user is free to choose the one that leads to the most

appropriate fairness-efficiency trade-off characteristics. Users can inclusively use

the degree of trade-off together with other relevant expert knowledge to decide

which is the best solution, or to revise the constraints on the planner (e.g. add

an intermediate goal or change the location of the base station). It is in this1045

sense that we call this a “human-in-the-loop” algorithm. We also propose to
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visualize path-wise and desired distributions together with planned paths as a

way to inform and potentially allow to discover fairness issues (see Figure 2).

Pseudo-code of our planner design is shown below in Algorithms 1 and 2.

In simple words, we start by optimizing the waypoints of a robot trajectory

Algorithm 1 Fairness-aware human-in-the-loop planner

Input: state space S, start state sstart, goal state sgoal, number of waypoints

W , desired distribution Q, evolutionary optimization’s population size M

// We will use Z to represent a vector of M waypoint-based paths

for Individual i← 1, ...,M do

Zi ← UNIFORM SAMPLES(S, W ) . Initialize each path as random

waypoints

end for

F ← EVALUATE(Z, sstart, sgoal, Q)

Z,F ← PARETO OPTIMIZE(Z, F , EVALUATE())

// Display Pareto-front F to user

// User chooses trade-off Fu (solution Zu)

Zfull ← [sstart, Zu, sgoal] . Concatenate waypoints with start and goal

ζ ← INTERPOLATE(Zfull) . fine interpolation between waypoints.

Output: ζ . final path

1050

using a multi-objective evolutionary method for Pareto-front estimation [59].

The waypoints are connected to start and goal states, interpolated, and used to

compute fairness and efficiency objectives. Then, the user visualizes the Pareto-

front, possibly together with auxiliary information on each of the solutions along

the front, such as the robot paths themselves, and the path-wise distributions.1055

In deployment situations, a user can select one of the solutions along the Pareto-

front, which is sent to the robot for execution.

To avoid conflating algorithm- with function-approximation issues, we used

the same optimization method to optimize population density and the cumula-

tive fairness cost (2) in Figure 5.1060
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Algorithm 2 EVALUATE

Input: set of paths Z = Z1, ..., ZM , where Zi ∈ SW , and W is the number

of path waypoints, start state sstart, goal state sgoal, desired distribution Q

for Individual i← 1, ...,M do

Zfull ← [sstart, Zi, sgoal] . Concatenate waypoints with start and goal

ζ ← INTERPOLATE(Zfull) . fine interpolation between waypoints.

E ← EFFICIENCY OBJECTIVE(ζ)

pζA ← COMPUTE DISTRIBUTION(ζ)

J ← JS DISTANCE(pζA, Q)

Fi ← [E, J ] . values of the objectives for Zi

end for

Output: F . values of the objectives for all paths
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