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Abstract

The process of designing hierarchical motion planners typ-
ically involves problem-specific intuition and implementa-
tions. This process is sub-optimal both in terms of solution
space (amount of possibilities for search-space approxima-
tions, choice of planner parameters, etc) and amount of hu-
man labour. In this paper we show that the design of hier-
archical motion planners does not have to be manual. We
present a method for parameterizing and then optimizing se-
quences of problem approximations used in hierarchical mo-
tion planning. We define these as a specific kind of graph with
intermediate state-spaces and solutions as nodes, and costs
and planner parameters as edge properties. These properties
become a continuous optimization variable that changes the
sequence and parameters of sub-planners in the hierarchy.
Using Pareto-front estimation, our method automatically dis-
covers multiple designs of optimal computation-time/motion-
cost trade-offs. We evaluate the method on a set of legged
robot motion planning problems where hand-designed hierar-
chies are abundant. Our method discovers sequences of prob-
lem approximations which achieve similar—though slightly
higher—performance than the best human-designed hierar-
chies. The performance gain significantly increases on new
problems, yielding 12x faster computation times and 10%
higher success rates.

Introduction

Motion planning problems can be sometimes be too chal-
lenging to solve within acceptable time-frames, especially
for high-dimensional robots and highly constrained environ-
ments. Hierarchical planning offers a good solution to reduc-
ing the time it takes to solve such problems. The strategy of
hierarchical planning is to solve approximate versions of a
problem and use those solutions to constrain or guide the
solution of the original problem. A sequence of multiple ap-
proximations can even be used, which are iteratively refined
in finer and finer approximations until a solution to the orig-
inal problem is obtained.

One issue with hierarchical planning is the need to think
about, and manually define, what these sequences of ap-
proximations should be. Approximations are often hand-
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designed using human intuition and ingenuity, which ar-
guably makes the process of algorithm development for
a new robot or environment time-consuming and ad-hoc.
There are also so many possibilities for search-space ap-
proximations, orderings of approximations in multi-stage
planners, planner parameters at each stage etc., that only a
very small subset of the solutions might be tested by the de-
signers in practice.

The main idea of this paper is that we can discover such
sequences of approximations automatically. Our strategy is
to optimize the approximation sequences on a training set of
planning problems. This involves automatically extracting
approximations for a given planning state-space, and then
optimizing the sequence of those approximations and plan-
ner parameters on a training set of planning problems.

The work in this paper is tightly related to concepts of
“multi-model planning” (Styler and Simmons 2017) and
“quotient space sequences” (Orthey, Escande, and Yoshida
2018). Compared to these, our contributions are:

1. We learn the sequencing of problem approximations to
use on a hierarchical motion planner, and obtain each
problem approximation automatically.

2. We learn a separate computation time budget for each ap-
proximation, in order to allow the effective use of any-
time planners and reduce overall computation time.

3. We obtain a set of sequences of approximations, each
with a different trade-off of computation-speed and
motion-quality. This allows a user to easily prioritize one
or the other at run-time according to task requirements.

Our work has connections to hierarchical reinforcement
learning, where the goal is to learn good hierarchies for con-
trol (Botvinick and Weinstein 2014; Frans et al. 2017), and
to neural network architecture search, where the goal is to
learn the number of layers, connections, etc. (Liu et al. 2017;
Zoph and Le 2016). The high-level idea, common to these
approaches and ours, is to parameterize hierarchical topolo-
gies and then search or optimize over those parameteriza-
tions in a training step.

Code related to this paper is available at:
https://github.com/ori-drs/hierarchical-planning-sequences



Related work
Hierarchies in motion planning

Many robot-specific hierarchical motion planning algo-
rithms have been proposed in the literature in recent years.
For example, (Chestnutt and Kuffner 2004; Mastalli et al.
2015) use 2D cost maps obtained from a circular approxi-
mation of a biped/quadruped robot as a heuristic when com-
puting footstep plans with A* search. The work of (Monte-
merlo et al. 2008) also uses a A* heuristic obtained from ap-
proximations of a car-planning problem. (Wermelinger et al.
2016) uses a cascade of planners for a legged robot, which
attempts to solve the motion planning problem with sev-
eral robot model approximations in a sequence: first a cir-
cumscribed circle approximation, then an inscribed circle
and finally a box model. (Park, Pan, and Manocha 2014)
uses an incremental optimization strategy to motion plan-
ning where the set of joints and links considered is increased
at each stage. More general hierarchical motion-planning al-
gorithms include path-velocity decompositions (Pham et al.
2017) where a collision-free path in configuration space is
planned first, and only then a velocity component is planned
within that path. Furthermore, the decomposition-based mo-
tion planning of (Brock and Kavraki 2001; Brock and Yang
2005) uses a wave-front expansion of spheres to estimate
a workspace towards which a sampling-based planner is bi-
ased. Similarly, the work of (Plaku 2013) uses heuristic costs
on a discrete decomposition of the workspace as a guide to
kinodynamic motion planning.

Across all these examples, common design choices in
hierarchical planners are the use of workspaces (such
as sphere-tunnels (Brock and Kavraki 2001) and cell-
decompositions (Plaku 2013)) or the use of only part of the
planning state-space (e.g. position and not time-components
of motion) to guide or constrain motion on the full space. At
a high-level, both involve discarding part of the state-space
as an approximation and solving a planning problem in this
lower-dimensional space using approximate robot models.
In this paper we also consider hierarchies which are built
this way. However, we allow an optimizer to find the best
possible subset of the state-space dimensions to discard, and
the order in which to do multiple approximate stages, during
an offline training procedure.

Our work is closely related to that of (Styler and Sim-
mons 2017), which considers multiple approximations of a
problem in a sequence encoded by a single-source single-
sink acyclic graph (ST-DAG). In our paper we also use an
ST-DAG representation of approximation sequences. How-
ever, we augment the representation with per-edge costs and
planner parameters (a computation time budget) which we
then learn in order to obtain faster and more optimal motion
plans. Additionally, (Styler and Simmons 2017) use transi-
tive versions of the original graphs, which we show in this
paper to perform poorly in terms of computation time. An-
other related effort is (Orthey, Escande, and Yoshida 2018),
which solves motion planning problems through sampling
on multiple quotient spaces. Our method also uses quotient
spaces but again learns the most effective sequence to use at
planning time—while (Orthey, Escande, and Yoshida 2018)

samples from all approximate spaces at planning time.

Hierarchies in other fields of study

Also relevant work is that on hierarchical mechanisms of
human decision-making (Balaguer et al. 2016; Huys et al.
2015) and the intersection of human action control with re-
inforcement learning (Botvinick and Weinstein 2014). These
studies show not only that humans plan in hierarchical ways,
but they try and investigate which hierarchies are actually
used in practice. (Solway et al. 2014) interestingly defines
a methodology based on Bayesian model selection for the
computation of optimal hierarchies given a planning task,
and shows how humans naturally discover and use such hi-
erarchies when solving the same tasks. In practice these hi-
erarchies involve planning on lower-dimensional spaces of
“options” or sub-goals, which are nodes of high centrality
(e.g. doors and other bottlenecks in the planning space).
Computational work in hierarchical reinforcement learn-
ing has also introduced new methods to discover sub-goals
and other hierarchical representations which involve plan-
ning over a smaller set of graph nodes (McGovern and
Barto 2001) before finding paths between these nodes. More
recent work learns hierarchies as general motor-primitives
that are used to control the motion of complex ant and
human-like agents, and which are selected by “master” ac-
tions of a lower-dimensional space on shorter planning hori-
zons (Frans et al. 2017). These examples involve more com-
plex abstractions of state-spaces than those considered in
this paper—where we build approximate state-spaces by dis-
carding part of the full-space dimensions. However, such re-
inforcement learning work is also in its infancy compared to
the search-based planning methods we consider, which are
straightforwardly applicable to real robots.

Architecture search and optimization of
hierarchies

Another body of literature relevant to this paper is that
of architecture search in neural networks. This is the pro-
cess of optimizing the topology of neural networks, such
as the number of layers, their connections and even activa-
tion functions. Early work includes that of (Maniezzo 1994)
which uses evolutionary algorithms to optimize the topol-
ogy and weight distribution of neural networks. More re-
cently, architecture search has been applied to deep neural
networks using evolution (Liu et al. 2017), reinforcement
learning (Zoph and Le 2016) and continuous optimization
(Liu, Simonyan, and Yang 2018).

New developments in evolutionary methods (Deb et al.
2002) and the availability of open-source implementations
of many of these algorithms (Fortin et al. 2012) further mo-
tivates the use of evolution for architecture search, and in our
case the discovery of complex sequences-of-approximations
for hierarchical motion planning. In this paper we focus
on multi-objective optimization since motion planning al-
gorithms will usually have to trade-off total execution time
and final motion cost. Our proposal here uses recent work in
Pareto-curve estimation using evolutionary methods (Deb et
al. 2002; Zitzler, Laumanns, and Thiele 2001) to provide a



human decision-maker with a set of possible sequences-of-
approximations with optimal time-cost trade-offs. Examples
of the use of Pareto-optimality in motion planning include
the work of (Lavin 2015) and (Choudhury, Dellin, and Srini-
vasa 2016), although they focus on obtaining Pareto-optimal
motion and we focus on obtaining algorithms that optimally
trade-off motion cost and computation time.

Problem

We consider the motion planning problem of obtaining a se-
quence of feasible states in a state-space of interest S. We
further consider the planning algorithm to be hierarchical,
which in this paper means it solves a sequence of increas-
ingly complex approximate problems until finding a solution
in S. Multiple combinations for the sequencing exist, so the
planner actually tries to solve a problem with a sequence of
approximations & first, but in case of failure it switches to
sequence Ss, etc. until all available sequences of approxi-

mations are exhausted. The sequence S, = {S¥, ..., 8% }is
of increasingly larger subspaces, i.e. S{“ C S§ C...C Slkgk
and the last state-space S”Ikgk = S. When solving an approxi-
mate problem on subspace S’f, the planner uses the solution

obtained on S¥_, to guide the search. We assume the motion
planner used on each (approximate) problem to be anytime
and optimal. Therefore, the planner may use a separate com-
putation time budget for each Sf . Our goal is to automati-
cally obtain the sequences S1, Ss, ... in a way that leads to
optimal (total) computation times, and optimal cost of the
solution in .S.

Method
Representing hierarchical planning as a graph

Our method relies on a two-terminal directed acyclic graph
(ST-DAG) which encodes the sequencing of approxima-
tions. See Figure 1 for a visual explanation. Each node V;
in this graph G represents an approximation (i.e. a subspace
S; where i is the index of the node here) and each edge
E;; represents a pair of successive approximations. A sub-
space is further associated with a state-validity model M;
(e.g. bounds and a collision geometry to use for checking
state validity). We parametrize the order in which the ap-
proximations are used by assigning costs C;; to each edge in
the graph. Solving the least-cost sequence of edges from the
source to the sink node on this graph provides the sequence
of approximations S;. If any of the approximate problems is
not solved successfully, then the cost of the associated edge
is changed to co and the least-cost sequence of edges will
reveal Sy. This can be done repeatedly until the sink node is
reached (i.e. a solution in S is found), or until all sequences
are exhausted. In addition to assigning costs to each edge,
we also assign a computation-time budget to each edge. This
represents the maximum amount of time that can be spent
solving an approximate problem, and it will allow to make
effective use of anytime planners.

In more detail, we use the pseudo-code in Algorithm 1
to solve a hierarchical motion planning problem. The algo-
rithm traverses the graph starting at the source node. At each

Algorithm 1 Motion planning with a sequence of approxi-
mations encoded by a graph G

Require: graph G(V, E, C, B); start state s and goal state
g of the original motion planning problem
E;; < GetNextApproximation(G)  // next edge in G
T; < GetGuideTrajectory(V;) // stored in V;
M < GetStateValidityFunction(V};) // stored in V;
S; < GetSubSpace(V}) /1 stored in V}
5 < ProjectToSubSpace(s, Sj)
g <+ ProjectToSubSpace(g, S;)
B;; < GetCompTimeBudget(£;;)  // stored in E;;
T} < SolveMotionPlanning(s, g, S;, M;, T, B;;)
if 7); not empty then

if IsSinkNode(V;,G) then

return: 7T

SetGuideTrajectory(V}, T})
. else
Cij — o0
. if SourceToSinkPathExists(G) then
Goto 1
. else
18:  return: failure
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iteration it obtains the next node to visit by computing the
lowest-cost sequence from source to sink using the Dijkstra
algorithm. The first unvisited node along this sequence rep-
resents the next approximate problem to solve. Thus, when
we visit a node V; by an edge F;; we obtain the state-space

S, state-validity model M, computation-time budget B;;
and previous solution 7; (obtained on a previous plan in sub-
space S). We project the start and goal states of the origi-
nal problem into S;, and use an off-the-shelf motion plan-

ner on S’j to solve the approximate problem—using M; as a
state-validity checker and 7T; as a solution guide (the guiding
method is described later). If a solution is not found within
the time budget B;;, we assign infinite cost to C;; to avoid
the future use of this approximation. If a solution is found,
we store it as T inside node V;. When a solution to the orig-
inal problem is obtained (i.e. the sink node is reached), or all
possible paths to reach the sink node are exhausted, the al-
gorithm discards changes to graph edge costs and returns the
final trajectory or a failure code.

Obtaining the graph structure (V, E)

We assume the state-space of interest .S is a Cartesian prod-
uct of factors

S:;S’lXSQX...XSN, (1)

where each factor Sy, is a state-space such as a position in
R3, an orientation SO(2), a set of joint angles, a mode,
etc. We then obtain a list of lower-dimensional subspaces
by computing all N-combinations of Sy, including the empty
set (i.e. we compute the power set of S1, ..., Sy and apply
the Cartesian product to each combination). Each combina-

tion will be a new state-space S; that will lack zero or more
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Figure 1: How a parameterized hierarchy is evaluated within the optimizer. In this example the edge costs are such that the
minimum cost to the sink of the graph is through the sequence @—XYZ-XYZ#: an initial plan in 3D position space only,
followed by a plan in the space of interest which uses the previous solution as a guiding heuristic cost-to-goal. In case the plan
fails, the next-lowest cost to the sink is @—XYZ#: a direct plan on the full space, allowing a larger computation time budget.

of the factors in S, and so |S;| < |S], Vi.

To build the structure of graph G, we add an edge F;; be-
tween nodes ¢ and j if ¢ is a subspace of j (i.e. all the state-
space factors of ¢ are present in j). The sink of the graph
represents the original problem, associated with state-space
S. The source of the graph is a dummy node with an edge
to all other nodes, thus allowing the learned sequence of ap-
proximations to start from any of the available state-spaces.

Optimizing the sequence of approximations (C,B)

The graph G(V, E, C, B) imposes a sequencing of approx-
imations to use in hierarchical motion planning. With this
representation in place, our objective is to learn the values
of the edge-costs C;; and time-budgets B;; that lead to the
most effective sequences-of-approximations.

To optimize (C, B) we use evolutionary optimization. In
short, this consists of picking random values for (C, B),
running Algorithm 1 on the training-set motion planning
problems with each value of (C, B), scoring the results, ob-
taining new values for (C, B) with an evolutionary strategy
(Deb et al. 2002), and repeating the process. Since we are in-
terested both in good solutions to the original problem, and
in finding them quickly, we score each (C, B) based on these
two criteria:

e f.,st: average, over the training set, of the quality of the
motion planning solutions found by Algorithm 1. This is
given by the problem-specific cost of the motion returned
by Algorithm 1 (i.e. this is a motion planning cost such as
distance or energy, not the graph-edge costs C).

o fiime: average, over the training set, of the time spent on
Algorithm 1.

Since f.,s+ can depend on the length of the motion, we set it
equal to the cost of the motion planning solution, normalized
by straight-line distance between start and goal states.

We use the NSGA-II algorithm (Deb et al. 2002) for
the evolutionary optimization strategy, which estimates the
Pareto-front of the two objectives, i.e. a curve of optimal
trade-off between f.,s: and fy;me. As we will see, this gen-
erates multiple solutions to the sequence-of-approximations,
which can be picked at run-time according to the time and
optimality requirements of the task at hand.

Figure 2: Obtaining the collision-checking geometry of a
subspace XYZ which discards yaw rotations from the full
space XYZ#. Left to right: the robot, the collision geome-
try in the original state-space, geometries of densely sam-
pled states (varying yaw), intersection of all geometries.
The collision-checking geometry used for this subspace is
a sphere.

Automatically obtaining state validity functions

To obtain state-validity functions automatically for any sub-
space we assume the original function M : S — {0,1}
consists only of state-space bounds and geometric collision
checking. The function takes on value 1 when the state is
valid and 0 otherwise. For any given subspace S; we auto-
matically obtain the state validity function M; in the follow-
ing way.

e The bounds of S; are taken directly from S since all of the
state-space factors of S; are also present in S.

e The collision-checking geometry is obtained by comput-
ing an admissible approximation. First, we obtain K sam-
ples s1, ..., Sk, where each s = (sk1,5k2) € S, Sp1 =
(0,...,0) € S; and sgz = UniformSample(S/S;). In
other words, we randomly sample the dimensions which
are not part of the subspace S;. Then we intersect all the
geometries G(s1) N ... N G(s) to obtain the collision ge-
ometry for subspace S;. See Figure 2 for an illustration.

Using previous solutions to guide motion planning

The way we use lower-dimensional plans to guide the search
on higher-dimensional plans is through a heuristic cost-to-
goal and follows the work of (Brandao et al. 2015). The
heuristic cost-to-goal of a state s is h = c.d(s, g), where
d(.) is a distance function, ¢ is the goal state, and c is a
lower bound on the cost-per-distance. We obtain this lower
bound by pre-computing ¢ = min; y c(s;, sk)/d(s;, sk)



where s;, s, are neighbor robot states and ¢(.) is the state-
transition cost function.

In the absence of a trajectory guide (i.e. for nodes V; that
are children of the source node of (G), we use the Euclidean
distance d(s, g) = ||s — g||. In other cases where a trajectory
guide T} does exist, we compute an improved estimate of
the distance-to-goal from 7;. In particular, we compute the
distance-to-goal of a state s as the sum of 1) the Euclidean
distance from s to T; (after projecting s to S,), and 2) the
total Euclidean distance traveled along the guide-trajectory
from the projection of s until the goal g.

Summary

To conclude, we solve motion planning problems with a
learned sequence of problem approximations by:

1. Building a graph structure V, E where each node repre-
sents a different combination of state-space factors (see
above section “Obtaining the graph structure”).

2. Optimizing edge costs C' and planner time-budgets B in a
training set of motion planning problems (see above sec-
tion “Optimizing sequences of approximations”).

3. Picking one of the Pareto-optimal values of (C, B) ob-
tained above, according to the desired computation-
time/path-optimality trade-off.

4. Using Algorithm 1 with the above values of V, E, C, B to
solve new motion planning problems.

Experimental evaluation
Implementation and setup details

In all our experiments we use ARA* (Likhachev, Gordon,
and Thrun 2003) from the SBPL library (Likhachev 2010)
as our anytime optimal motion planner. We use a 2.5D
representation of the environment for collision and state-
cost computations, as implemented in the GridMap library
(Fankhauser and Hutter 2016). For the optimization we use
the Pareto-front estimation algorithm NSGA-II (Deb et al.
2002) as implemented in the DEAP Python library (Fortin
et al. 2012). We make use of its integration with the SCOOP
Python library (Hold-Geoffroy, Gagnon, and Parizeau 2014)
for parallelization. For fast training and prototyping we used
a high performance computing system with 64 cores.

Hierarchical planning for ANYmal

Our first experiment is for motion planning of a legged
robot, ANYmal, within an industrial site with obstacles
(walls) and stairs, as shown in Fig. 5. We obtained the map
through laser scans on-site.

The goal is to find the optimal sequences-of-
approximations for obtaining trajectories in the state-space

S =TR3x SO(2) x SO(2) x {0,1,2}, )

which corresponds to planning an XYZ position for the
base, a pitch and a yaw angle, and a locomotion mode. The
modes represent different controllers which can be used on
the robot and are specialized for specific terrain types. The
choice of locomotion mode influences state-costs: mode 1 is

preferred on flat ground, mode O on slightly rough terrain,
and mode 2 on stairs and very rough terrain. The actual defi-
nition of the cost functions is the same as the work by (Bran-
dao, Fallon, and Havoutis 2019). The robot model used for
collision-checking is shown in Figure 2.

We optimized (C, B) on a set of 6 random start-goal con-
figurations on the environment shown in Figure 5. The poses
were obtained by uniform sampling of position and yaw co-
ordinates within an area of the map rich in walls, stairs and
narrow passages. We compare our algorithm to several base-
lines: 1) a non-hierarchical planner (planning directly in S);
2) common serial-hierarchy planners using a single interme-
diate subspace solution to guide planning (we consider an
XYZ sub-plan (Chestnutt and Kuffner 2004), an XYZ-yaw
plan and an XYZ-mode plan); and 3) the hierarchical rep-
resentation of (Styler and Simmons 2017) which consists
of a fixed-sequencing version of our method (breadth-first-
search) and a transitive version of the graph to reduce the
number of edges—we will call this method “BFStransitive”.
The graph representation of our hierarchy and the baselines
is shown in Fig. 3. Training took roughly 5 hours for our
method and 2 for the baselines on a 64-core machine, with
20 generations of 20 individuals and 100 children.

The final Pareto-front of the cost-time objectives is shown
in Fig. 4. The figure shows that our sequences of approxima-
tions obtained similar motion costs and computation times
to the best-performing serial-hierarchies. Our method can
also decrease computation times considerably compared to a
transitive version of the graph with fixed sequencing (Styler
and Simmons 2017). The no-hierarchy baseline could not
solve all problems within the time budget and so its Pareto-
front is not shown in the figure (it would be a cost/time aver-
age over the “easy” problems only, hence lower cost but not
comparable). The Pareto front shows a clear gain in motion-
cost when computation times are increased to around 20s,
even though the trade-off becomes quite expensive after this
point.

Analysing the particular solutions of the Pareto-set shows
that each point in Fig. 4 corresponds to a different se-
quencing of the approximations. This can be seen by trac-
ing the actual executions of the planner in different prob-
lems, as shown in Fig. 5 for the extremes of the Pareto
set, i.e. the lowest-cost solution and lowest-computation-
time solution. The figure shows that the speed-focused se-
quence first attempts to quickly find solutions directly in
the full-space, which provides fast-and-low-cost solutions
in no-obstacle problems (“fast hierarchy” graphs). On fail-
ure, the planner will use an XYZ-fullspace hierarchy. This
is therefore an extension to the “XYZ-hierarchy” baseline
and explains the improvement in total computation time.
The cost-focused sequence, on the other hand, uses plan-
ning on lower-dimensional spaces which include the mode
component of the state. These are easier to compute than
full-space plans but provide better estimates of cost than
position-only guides. The figure also shows the final mo-
tion that corresponds to the graph executions, and shows
that cost-specialized sequences are qualitatively smoother
on turns than fast-hierarchies. The length of use of each
mode is also slightly different: there is one more section



(a) Ours

(b) hierarchyXYZy

(c) hierarchyXYZM

(d) hierarchyXYZ

(e) BFStransitive

Figure 3: The different hierarchies we evaluate on the ANYmal experiment. Note that only “ours” optimizes the sequencing of

approximations (induced by per-edge costs).
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Figure 4: Pareto fronts of total-computation-time and final-
motion-cost (ANYmal experiment).

where mode 2 is used close to the start of problem 1, be-
cause proximity to obstacles is better tackled by this mode,
and the same mode is less used towards the goal because of
the absence of obstacles.

Finally, we solved a new set of 10 random problems (gen-
erated from a different random seed) using all the opti-
mized sequences-of-approximations (all points of all Pareto-
fronts). We compare the best performing solution of each
in Table 1, where performance was obtained by sorting
all results of a sequence by best success rate and then by
best computation time. The table shows that our optimized
sequences-of-approximations obtain considerably faster re-
sults of 3x to 9x for those with 100% success rate. This
shows a better generalization and transfer power than other
methods as the gap of performance grew larger compared to
the training set. The table also shows the worst-case success
rates (minimum over all solutions of the Pareto set) which
are the same for all hierarchies (90%).

Comparison with a cascade-planner

In another experiment we compare the performance of our
optimized sequences-of-approximations to that of carefully
and manually designed hierarchies. We use the example
of the cascade planner proposed for the StarlETH robot in
(Wermelinger et al. 2016). In that paper, the authors propose

Table 1: Performance on test set (ANYmal experiment)

Hierarchy Success Avg. Avg. | Worst-case

rate* time (s)*  cost | success rate
ours 1.00 11.46 343 0.90
XYZy 1.00 94.50 2.86 0.90
XYZM 1.00 69.23 2.74 0.90
XYZ 1.00 33.15 3.00 0.90
fullspace 0.80 13.33 1.97 0.70
BFStransitive 1.00 25.03 2.73 0.90

*best of Pareto set (by success and time in that order)

a hierarchical planner that plans motion in a sequence: first
using a circumscribed-cylinder model, then an inscribed-
cylinder model, and finally a bounding-box model of the
robot. If one planner on the sequence fails to find a solution
within a time budget, the next planner is used. We mimic this
behavior using the collision checking geometries of Fig. 6
and by fixing the ST-DAG edge costs so that the planning
order just described is fulfilled.

We set the motion planning state-transition cost to Eu-
clidean distance. Our comparison is generous since we op-
timize the computation time budgets given to each of the
plans—even though this is done manually in (Wermelinger
et al. 2016) and in other approaches. We compare fully op-
timized sequences-of-approximations (optimizing per-edge
time budgets and costs) to several baselines: 1) “cascadeOpt-
Time” has fixed costs but optimizes a single computation
budget which is applied to all edges, and 2) “cascadeOpt-
Time2” has fixed costs but optimizes per-state-space compu-
tation budgets (one variable which applies to all XYZ spaces
and another to XYZ-yaw). The latter is the strategy used in
(Wermelinger et al. 2016). We also evaluate the performance
of more traditional methods: 3) directly planning on the full
space, 4) serial-hierarchy with an intermediate sub-plan on
XYZ using an inscribed-cylinder model. The optimization
vectors were of size 1, 2, 1 and 2 respectively for each base-
line, and 10 for our hierarchy. Training took roughly 2.5
hours for each hierarchy on a 64-core machine, with 20 gen-
erations of 20 individuals and 100 children.

We show the results of the optimization in Fig. 7. The fig-
ure shows that our optimized sequences-of-approximations
achieve similar total computational times but slightly lower



(a) Problem 1, fast-sequence

(b) Problem 1, cost-sequence (c) Problem 3, fast-sequence

(d) Problem 3, cost-sequence

Figure 5: The execution of our hierarchical planner in two problems and at two cost/time trade-offs (ANYmal). Red graph
edges indicate failed plans, green are successful. Fast-sequence and cost-sequence are the two extremes of the Pareto set. Robot
trajectories on top row are black for mode 2 (rough terrain preference) and purple for mode 1 (flat ground preference).

= .

Figure 6: Collision-checking geometries used in the
cascade-planner experiment. Left to right: inscribed-
cylinder model used in XYZ space, circumscribed-cylinder
model used in XYZ space, full model for XYZ-yaw. The full
robot model is shown underneath for clarity.

final motion costs (by 2%) than the baseline hierarchies,
even if these were partly optimized too. More importantly,
the hierarchical designs of the baselines are the result of a
careful manual design and tuning process (Chestnutt and
Kuffner 2004; Wermelinger et al. 2016), which in our ap-
proach is done automatically—both the decision of compu-
tation time budgets at each planning stage and the sequenc-
ing of the approximations used themselves.

Analysing the particular solutions of the Pareto-set shows
that each point along the front in Fig. 7 corresponds to a
different sequencing of approximations. This can be seen by
tracing the actual executions of the planner in different prob-
lems, as shown in Fig. 8 for the extremes of the Pareto set.
The figure shows that the speed-focused sequence first at-
tempts to quickly find solutions directly in the full-space. On
failure, a plan with a circumscribed cylinder model (marked
as XYZ*) is attempted before an inscribed cylinder one
(marked as XYZ). This is therefore slightly different from
the proposal of (Wermelinger et al. 2016) where planning
in full-space is only attempted if all others have failed. The
cost-focused sequence-of-approximations exhibits a differ-
ent strategy: it first attempts a quick (sub-optimal) plan with
a circumscribed cylinder model which is then refined for a
long time. On failure it attempts planning in full space, and
only then with an inscribed-cylinder-then-full-model hier-
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215_ o Yty hierarchyXYZ 4
‘ B—B cascadeOptTime2

210, e*—e cascadeOptTime
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Figure 7: Pareto fronts of total-computation-time and final-
motion-cost (cascade-planner exp.)

archy. The order enables quick-and-low-cost solutions for
problems with few obstacles but still allows low-cost solu-
tions to be found in complex problems with narrow passages
(requiring the inscribed cylinder model).

Finally, we solved a new set of 10 random problems (gen-
erated from a different random seed) using all the opti-
mized sequences-of-approximations. We compare the best
performing solution of each sequence-of-approximations in
Table 2, where performance was obtained by sorting all re-
sults of a sequence by best success rate and then by best
computation time. The table shows our method is 1.5x to
12x faster than other hierarchies. For those methods with
similar computation times to ours, they obtain higher mo-
tion costs than ours. The table also shows worst-case suc-
cess rates, which are 100% for our planner and 80 to 90%
for other hierarchies.



Figure 8: Execution in several planning problems, at differ-
ent cost/time trade-offs (cascade-planner experiment). Each
column is a different problem. Top row: fast-sequence, bot-
tom row: cost-sequence. Red edges indicate failed plans,
green are successful. XYZ* uses a circumscribed cylinder
robot model, XYZ uses an inscribed cylinder.

Table 2: Performance on test set (cascade-planner exp.)

Hierarchy Success Avg. Avg. Worst-case
rate*® time (s)* cost success rate
ours 1.00 4.72 208.48 1.00
XYZ 1.00 57.06 196.04 0.90
cascadeOptTime2 1.00 17.04 209.64 0.90
cascadeOptTime 1.00 7.41 211.44 0.80
fullspace 0.70 28.60 112.51 0.60

*best of Pareto set (by success and time in that order)

Conclusion and discussion

We proposed a method to automate and optimize the pro-
cess of designing sequences of problem approximations for
hierarchical motion planners. We use single-source single-
sink graphs to represent sequences of approximations, and
each approximation consists of an automatically obtained
subspace and state validity function. Subspaces are obtained
by discarding parts of the factored state-space. We find se-
quences of approximations through evolutionary optimiza-
tion of per-graph-edge parameters: a cost and a computation
time budget. We use a Pareto-front estimation method to find
multiple alternative parameters, with optimal computation-
time and motion-quality trade-offs.

Our experiments showed that our method achieves sim-
ilar, though slightly better, performance than the best-
performing serial-hierarchies and also other carefully hand-
designed robot-specific hierarchies. The performance gap
increases on test problems, i.e. new problems not present
during the learning stage, where we obtain solutions up to
12x faster. This supports that our method is more robust
and generalizes better than existing state-of-the-art hierar-
chy designs. The intuition behind this result is that ST-DAG
representations of sequences-of-approximations are more

flexible, having more pathways to obtain a solution in the
state-space of interest when compared to traditional serial-
hierarchies (i.e. with a single path from source to sink).

The take-home-message is that hand-designed motion
planning hierarchies, because they are narrow in terms of
the number of considered sequences of approximations and
planner parameters, can lead to sub-optimal planners that do
not transfer well to new problems. Our baselines were quite
generous and assumed the computation-time allowed at each
stage of traditional planning hierarchies to be optimized, but
in practice these parameters are usually manually obtained
by a few tests on a few problems of interest. Our parameter-
ization allows us to automate not only this process but the
process of hierarchy design itself.

Regarding limitations, our method as presented here only
considers state-space approximations obtained by discard-
ing parts of a factored state-space. Ideally, and as part of
future work, the state-space approximations should be gen-
eral state-space projections automatically discovered. It is
still unclear how this could be best achieved, but we believe
this paper brings us a step closer to this goal. Additionally,
the edge-cost component of our hierarchy parameterization
is non-differentiable, which is also why we use an evolu-
tionary method to solve it. Other parameterizations could
lead to better results, so the question of which parameteriza-
tion is best suited for hierarchy-optimization is still open. Fi-
nally, during the training stage we update optimization vari-
ables based only on the quality of the motion obtained at the
state-space of interest. However, this means that variations
in computation-time-budgets or edge-costs along pathways
of the ST-DAG that do not get executed on the training set
will not be reflected in the computation time or quality of
motion. Currently we tackle this problem by adding suffi-
cient motion planning training problems. Alternatively, the
optimization method could aggregate the computation times
and motion costs over all possible planning sequences in
the graph, for example weighted by edge cost—similarly to
what is done in neural networks (Liu, Simonyan, and Yang
2018). This could lead to better generalization and would
allow the use of gradient-based optimization methods.
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