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GaitMesh: controller-aware navigation meshes for
long-range legged locomotion planning in

multi-layered environments
Martim Brandão, Omer Burak Aladag, and Ioannis Havoutis

Abstract—Long-range locomotion planning is an important
problem for the deployment of legged robots to real scenarios.
Current methods used for legged locomotion planning often do
not exploit the flexibility of legged robots, and do not scale
well with environment size. In this paper we propose the use of
navigation meshes for deployment in large-scale multi-floor sites.
We leverage this representation to improve long-term locomotion
plans in terms of success rates, path costs and reasoning about
which gait-controller to use when. We show that NavMeshes have
higher planning success rates than sampling-based planners, but
are 400x faster to construct and at least 100x faster to plan with.
The performance gap further increases when considering multi-
floor environments. We present both a procedure for building
controller-aware NavMeshes and a full navigation system that
adapts to changes to the environment. We demonstrate the
capabilities of the system in simulation experiments and in field
trials at a real-world oil rig facility.

Index Terms—Legged Robots; Autonomous Vehicle Navigation;
Motion and Path Planning.

I. INTRODUCTION

LEGGED robots can use a variety of locomotion gaits. For
example, quadruped robots can switch their locomotion

mode to walk, trot or bound according to the terrain at hand.
This diversity of ways to navigate environments renders legged
robots unmatched for overcoming varied terrain. However,
it comes at the cost of reasoning about terrain features and
choosing the appropriate gait to use for each particular area.
Even though the choice of gait-controllers has been included
in recent locomotion planning methods [1], it is still not clear
which map representations and planning methods are most
suitable for long-range locomotion tasks.

In this paper we present our approach to long-range legged
robot locomotion planning, building on navigation meshes
(NavMeshes) [2], [3], [4]. Our approach was developed having
in mind applications of inspection and monitoring of large
industrial facilities, e.g. power plants, offshore wind and oil &
gas platforms, or nuclear facilities. In this context we assume an
approximate map of the environment to be known in advance,
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Fig. 1: Top to bottom: point cloud of an oil rig with color-
coded curvature, gait-controller choice (gray for trotting and
dark blue for walking), navigation mesh (light blue for trotting
and red for walking).

or that the robot can be teleoperated to build up a map of the
facility before autonomous deployment.

NavMeshes are popular map representations within computer
game AI [5], where they are used to plan paths for agents
over large-scale environments such as buildings or open-
worlds. Such large-scale planning methods are important for
autonomous long-term robot deployment. Reasoning about the
choice of gait is another requirement for large-scale planning in
the context of legged locomotion. For example, going through
a building following a small-distance path might involve the
use of slow walking gaits to climb stairs and navigate narrow
corridors. In contrast, going around the same building on a
longer-distance route could be a faster alternative using a speedy
trotting gait.

In this paper we present methods for both building and using
gait-aware navigation meshes for legged locomotion at such
scales. Our contributions are:

• A complete system to navigate large-scale sites while
reasoning (and switching between) gait-controllers, using
NavMeshes together with local planners.

• An automated method to generate navigation meshes of
large-scale environments for legged robots with multiple
gait-controllers.

• An evaluation of the advantages of navigation meshes for
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long-range planning.
• A detailed comparison between traditional robotics meth-

ods such as PRMs and RRTs, and NavMeshes, demonstrat-
ing how NavMeshes overall outperform these methods,
especially when planning over multiple floors.

The novelty of our system is that it can solve long-range
multi-controller locomotion paths, that take gait capabilities of
legged robots into account. Compared to previous state-of-the-
art legged systems, ours automatically plans long-range paths
over multiple floors, and considers gait capabilities for long-
range and not just short-range locomotion [1]. The system can
also handle obstacle and terrain changes to the environment
through the effective use of virtual obstacles in navigation
meshes. We evaluate our system both in simulation experiments
and on multiple real-robot field trials at a realistic oil rig facility,
used for personnel training exercises.

II. RELATED WORK

A large number of map representations have been used
for robot locomotion planning. Probabilistic Roadmaps [6],
occupancy grids [7], OctoMaps [8] and heightmaps [9], are a
few of the popular map representations for this purpose. These
are also popular for legged robot locomotion planning. For
example, [10] uses search on occupancy grids and [11], [1] on
heightmaps, while [12] uses RRT* on heightmaps.

While these representations are suited to short-term planning,
they do not scale well to large (e.g. multi-floor) environments.
For this reason, in deployments to large environments re-
searchers have used manually designed topological graphs
[13], [14]. Related map representations for long-term robot
deployments include architectural floor plans [15], hand-drawn
floor plans [16], and 3D vector maps [14]. Also for long-term
planning, Probabilistic Roadmaps (PRMs) [6] have been used
for legged robot locomotion planning [17] and in combination
with Reinforcement Learning methods for long-term mobile
robot navigation [18]. Outside of robotics, [19] uses a database
of CAD models for each floor and building of a university
for navigation. While this representation allows long-range
planning, it comes at the cost of intense manual labour in
terms of CAD drawing, stair labeling, and computing distances
between floors and buildings.

Our work targets long-term and large-scale robot deploy-
ments, for quadruped robots in particular. We specifically
focus on building a system for fast path-finding in large-
scale, potentially multi-level environments such as industrial
oil rigs and other hard-to-access sites [1]. Except for PRMs,
the map representations we have mentioned are either single-
floor or manually designed—which could lead to imprecise
maps or large manual work requirements. To account for multi-
level large-scale facilities while avoiding manual labeling we
use point cloud acquisition and automatic navigation-mesh
construction from point clouds. Navigation meshes [2], [20],
[3], [4] are related to simpler 2D cell-decomposition methods in
robot path planning, and also to semantic segmentation methods
such as the watershed algorithm [21] and others in the way
they partition the space into walkable non-overlapping regions.
These map representations are popular in computer games due

to their scalability and fast computation time for path-finding.
Computation time is critical in game AI since often paths
have to be found for hundreds or thousands of agents at fast
rates [22]. The Recast toolkit for navigation meshes [20], for
example, is used in several commercial games [23] and in the
Unity engine [5]. Navigation meshes represent the world as a
set of polygons and a graph representing traversability between
them. Path-finding consists in a search over this compact graph.
A comparison of navigation mesh methods is made in [4].

Due to requirements of computer games, navigation meshes
also usually encode per-polygon labels for the possible modes
of locomotion and the costs of different map areas (e.g. an
agent could swim over a river or travel to the closest bridge).
This functionality is also close to the reality of legged robot
locomotion—characterized by a large set of possible gaits [24]
and controllers specialized for different kinds of terrain [1]. In
this paper we use navigation meshes where each polygon is
assigned with a choice of controller. This allows to make long-
term plans aware of the real cost of traversing different regions,
and hence obtain paths of low global cost. We automatically
compute these controller annotations by local 3D point cloud
features similar to the heightmap-based work in [12].

III. DEFINITIONS

1) Gait controller: In this paper a “gait controller” is any
method that controls the full-body motion of a robot to achieve
a desired velocity, or goal position, of a robot’s base. We
consider a setting where multiple controllers are available for
a given robot, specialized to different kinds of terrain. We
represent this set of controllers by M = m1, ...,mM , where
M is the number of available controllers.

2) Walkable environment: We use the concept of a “walkable
environment” W as defined in the navigation-mesh literature
[4]. W is a set of triangles that are traversable by an agent,
i.e. robot. For the purpose of this paper, each triangle t is a
tuple of three points and a label, t = (p1, p2, p3,m), where
p1, p2, p3 ∈ R3 and m ∈ M. The label identifies the preferred
choice of controller to be used when the robot’s projected
COM lies within the triangle. These triangles represent the
surfaces traversable by the agent (i.e. robot). For typical legged
robots this will consist of triangles on the floor, stairs and other
traversable surfaces. Surfaces that are more inclined than what
is possible by the robot’s capabilities will not be part of the
walkable environment.

3) Multi-layered environment: Intuitively, a “multi-layered
environment” is an environment with walkable areas at multiple
heights, e.g. a multi-floor building. More formally, a walkable
environment W is multi-layered when the projection of its
triangles to a horizontal plane leads to intersections [4].

4) Navigation mesh: A navigation mesh is a tuple N =
(W,G): it consists of a walkable environment W and an
undirected graph G representing the possibility to navigate
between adjacent triangles in W .

IV. METHOD

The overview of our proposed system is shown in Fig. 2.
It uses high-level planning based on NavMeshes together
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Fig. 2: System overview.

with local-map planning to navigate large environments, while
allowing for online adaptation using virtual obstacles. We will
go through the process of building NavMeshes, and the content
of each of the blocks in the following sections.

A. Building large controller-annotated environment meshes

In order to build a gait-aware NavMesh we require a
triangular mesh where each triangle is annotated with a gait
controller choice. We will now explain the process, summarized
in Fig. 3, to obtain such a mesh. The method uses either a CAD
model of the environment or a point-cloud acquired on-site.
We start by describing the point-cloud-based method.

1) Point cloud acquisition: We obtain point clouds of
whole multi-layered facilities by successive laser-scanning and
registration using a portable device. In principle any mapping
device can be used, including the on-board robot SLAM system,
as long as the cloud captures the walkable environment, i.e.
floor, staircase steps and other surfaces.

2) Per-point controller assignment: We start by computing
normals and curvature for all points in the point cloud. After,
in a similar way to [12], for each point we compute the local
maximum of curvature cmax in a spherical neighborhood around
the point. We use the radius of the smallest sphere which
encloses the robot for this. While we found that curvature
information is sufficient to choose between our robot platform’s
controllers, other features such as roughness, slope or height-
differences could be used [12] as appropriate for the robotic
platform and controller choices available.

In our case we assign a trotting-gait controller, specialized
for flat terrain, to all points where cmax is below a threshold,
and otherwise assign a walking-gait controller which uses
vision for foot placement. The output of this step is therefore a
point-cloud annotated with a choice of controller (i.e. a unique
number identifying a controller).

3) Mesh reconstruction: We reconstruct a 3D triangular
mesh from the original point cloud using the Ball-Pivoting
algorithm [25]. While other methods are openly available [26]
we found that Ball-Pivoting produced good results for large-
scale environments. We recommend the interested reader to
see [27] for a comparison of this and alternative open-source
mesh reconstruction methods for robotics applications.

4) Per-polygon controller assignment: The final step in the
procedure is to assign a controller choice to each triangle of
the reconstructed mesh. To achieve this we project the point-
cloud controller-annotations back to mesh triangles. For each
triangle t in the mesh we obtain all the points in the annotated

point cloud P that fall within a distance dmax of t. We then
run a voting procedure: we count the number of points which
support each of the controllers and assign the maximally-voted
controller to triangle t.

When a CAD model of the environment is available, we
uniformly sample the CAD model to obtain a dense point
cloud. We then run the same cloud-annotation and cloud-to-
mesh annotation projection procedure, described above, to
obtain a controller-annotated mesh.

B. Building multi-controller navigation meshes

We use Recast [20] to generate navigation meshes from the
annotated mesh. Recast starts from a triangular mesh as input,
and produces a navigation mesh using the following procedure:

1) Voxelize the polygons. This generates a multiple-height
heightfield from the triangular mesh, where each cell
contains a list of the occupied heights.

2) Annotate walkable space from solid voxels. This filters
out voxels where a cylindrical approximation of the robot
cannot stand based on surface inclination and vertical
clearance. The heightfield representation obtained by the
previous step is particularly suited for this stage since
identifying voxels on floor surfaces and with enough
ceiling-clearance is fast.

3) Compute a distance field in voxel space. This is the
distance of each walkable voxel to the closest non-
walkable voxel on the heightfield, or to a voxel annotated
with a different controller-choice.

4) Run a “watershed” algorithm on the distance field. This
basically segments the walkable voxels into simple
regions that do not overlap. We encourage the interested
reader to refer to [21] for a detailed and intuitive
explanation of the method.

5) Compute polygons representing the contours of the
segmented voxel regions, using the Ramer-Douglas-
Peucker algorithm [28].

6) Triangulate the polygons and build the connectivity graph
G used for planning in the navigation mesh.

For a more in-depth overview of the design choices and
implementation, we refer the reader to [2].

When applied to large-scale point-cloud-estimated meshes,
the previous procedure generates a considerable number of
unconnected (inaccessible) walkable areas—such as the top
of a lamp post, the top of ceiling rails, or areas where point
cloud noise is high (e.g. far away from the laser scans). This
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Fig. 3: Our procedure for generating gait-controller-aware navigation meshes from large point clouds.

usually makes visualization of the navigation meshes more
difficult and needlessly increases the size of the navigation
mesh [3]. To avoid this we extend the previous procedure with
an additional post-processing step: we remove all NavMesh
triangles to which there exists no path to a reference point that
is known to be accessible by the robot (e.g. point in a large
room, or the “base station” of the robot).

The output of the whole process is a clean NavMesh N that
represents the walkable environment, and is annotated with a
controller choice for each triangle. Each controller choice can
be given a different weight, which scales the distance costs
of the respective triangles in the graph representation of the
navigation mesh.

This NavMesh can be used for fast path-finding by:
1) projecting start-goal points to the mesh,
2) running A* search on the space of NavMesh triangles,

between the start and goal triangles,
3) computing the shortest line-path that connects the se-

quence of triangles found.
An efficient implementation of this procedure is already
provided with the Recast toolkit. We implemented a ROS
wrapper for both the path-finding and mesh-construction
functions of Recast, as well as the additional post-processing
routine described previously. As described next, this ROS
wrapper is used by a high-level planner to obtain intermediate
waypoints for local navigation.

We provide both the ROS wrapper for Recast and the pipeline
for generating gait-controller annotations open-source in https:
//github.com/ori-drs/gaitmesh.

C. High-level planner: long-term multi-controller locomotion
with navigation meshes

The high-level planner takes as input a goal position within
the map and guides the robot to it. At 1Hz, it queries the
NavMesh to obtain the global path to the goal, and sends
an intermediate goal to a local planner. We compute the
intermediate goal by finding the point along the NavMesh’s
path that is either 1 meter way from the current state of the
robot, or just before a sharp turn—whichever option is closest.
In our experiments we defined 20 degrees as a sharp turn.

D. Local planner: short-term multi-controller locomotion

The local planner computes a trajectory to the intermediate
goal given by the high-level planner, using a local heightmap
obtained from the robot’s onboard sensors. We use GridMap
for heightmap computations [9]. We use sensor-based maps
instead of the NavMesh at this stage in order to reflect the actual
geometry of the environment—which might have changed since
the NavMesh construction stage.

The local planner uses A* search to compute a path from the
current state of the robot to the intermediate goal. The search
is made in the space of 3D position and yaw rotation, thus also
compensating for the cylindrical assumption of path-finding
in the navigation mesh. We compute collision using a set of
spheres that cover the body of the robot and computing its
intersection with the local heightmap.

Furthermore, the planner constantly checks the map’s con-
troller annotations in the location over which the robot is
currently walking to trigger the switch of gait controllers. For
the experiments presented in this paper we used the NavMesh
annotations to trigger controller switches. However, similar
local features that are used for NavMesh annotation could
potentially be computed on the local sensor-based maps to
trigger the switches as well, as we have shown in [1]. To avoid
issues related to discontinuity in the dynamics we bring the
current controller to a stop before switching to the next.

Finally, the local planner can add obstacles to the NavMesh
whenever it fails to find a path to the intermediate goal. This
could happen either because the environment has changed (e.g.
new furniture), or because of errors in the NavMesh construc-
tion process (e.g. an obstacle was not properly seen by the
scanning device). Such NavMesh-obstacles will immediately
lead to changes in the global paths and thus in changes to the
intermediate goals sent by the high-level planner to the local-
planner. We implement NavMesh-obstacles as cylinders which
trigger the removal of the underlying triangles. We use cylinders
of constant radius equal to the radius of the robot, although the
interface is general and allows to use variable-radius cylinders
in the future (e.g. estimated through perception).

V. RESULTS

A. Building navigation meshes

We tested our NavMesh building process in two environ-
ments. Environment 1 is an oil rig at the Fire Service College
(FSC) in Moreton-in-Marsh, UK, a facility to train personnel in
various simulated environments. Aspects of the oil rig appear
on Fig. 5 and 6. We used a portable laser-scanner to map
the environment. This involved placing the device at multiple
locations on a tripod, to take successive scans and register them
to previous ones. We then post-processed clouds to remove
people, sub-sampled the cloud, and ran the process in Fig. 3.
The whole scanning-and-processing process took approximately
9 hours. The NavMesh generation step took 8.6 seconds. For
the NavMesh’s cylindrical robot model we use a radius equal
to that of a cylinder which inscribes the robot’s body.

The point cloud, curvature and annotated point clouds are
shown in Fig. 1, together with the resulting navigation mesh.
Trotting areas are in blue and vision-based planned-step static
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Fig. 4: Environment 2, the many-floored ARGOS Challenge
facility model. Left to right, point cloud with color-coded
curvature, controller choice, navigation mesh.

walking areas are in red. Floors are connected by stairs which
appear connected in the navigation mesh. The number of
polygons to represent the full environment is 6075. Most
flat ground is annotated with trotting, except around narrow
passages such as doorways and staircases. The elevated floor
of the facility is annotated with static walking because of its
rough grid-like flooring.

Environment 2 is a CAD model of a real oil & gas onshore
site used for TOTAL’s ARGOS Challenge. We followed the
CAD model procedure indicated in Section IV-A. NavMesh
generation took 0.5 seconds. We show the clouds and NavMesh
in Fig. 4. Multiple floors are connected by stairs which appear
as long triangles in the navigation mesh. The number of
polygons to represent the environment is 447. Elevated floors
are annotated with static-walking as the corridors are narrow.

B. NavMeshes vs. sampling-based roadmaps

In this section we compare NavMeshes against popular
sampling-based planning methods in robotics. PRM*, in
particular, uses a similar approach to planning compared to
NavMeshes—it encodes traversability between locations in the
environment offline as a graph, which is then searched at query
time and refined to find an optimal path. While NavMeshes
rely on deterministically building a geometric representation
of the environment (set of triangles), PRMs build only a graph
connecting specific random locations. For this experiment, all
methods minimized only distance of the path—thus ignoring
gait-controller annotations.

We ran the comparison on Environment 1. We used the
implementation of PRM* in OMPL [29]. We defined state
validity as the intersection of a cylinder with any points on
the original cloud. We used a cylinder of the same dimensions
as that used for the NavMesh. For a state to be feasible it
also needs to intersect points in a volume below the cylinder
(i.e. to make contact with the ground). States are sampled by
randomly picking points from the cloud and randomly picking
a robot height within an interval. For planning trajectories in
this roadmap we let PRM* refine the path. We obtained results
for building times of 10, 360 and 3600s, and for planning
times of 0.1s and 10s. We also compare NavMeshes to the use
of RRTs: where at planning time an RRT is run from scratch.

Table I shows the pre-computation time, planning time,
and path length obtained with NavMeshes, PRMs and RRTs
on 200 planning problems. Each planning problem is a
randomly sampled start and goal state, and the average path

lengths are shown. All methods were given the same planning
problems. Since randomly-generated start and goal states can
be on different-floors, we specifically generate 100 same-
floor problems and 100 different-floor problems. We ran the
benchmark single-threaded on a Intel Xeon 3Ghz CPU. The
table shows that NavMeshes obtain 100% success rate at 100x
faster computation times than the best-performing sampling-
based method. The best competitor was PRM* when it was
left to build the roadmap for 3600s (compared to 8.6s building
time for NavMeshes) and at a computation time of 0.1 second,
compared to 1ms for NavMeshes. Path lengths were equivalent
on average in PRMs, but only when the roadmap is built
for long enough time (3600s). In this case, PRMs sometimes
obtain shorter paths than the NavMesh’s as seen by the standard
deviation, which is due to its continuous nature and capability to
“cut corners” and leave the NavMesh’s polygons close enough
to obstacles. They similarly often obtain longer paths due to
their stochastic nature, and obtain slightly lower success rates.
Of the single query methods RRTConnect did best but only
solved 88 out 100 problems (at 10s computation).

Importantly, the success rate of sampling-based planners
considerably drops when the environment becomes more
challenging and involves narrow passages, such as staircases
to access different floors. In this setting, only PRM* manages
to find paths, but again at lower success rates and much larger
computation times than NavMeshes.

C. Qualitative inspection of multi-controller paths

Next, we qualitatively show the behavior of the NavMesh-
based planner when gait-controller annotations are considered.
We have two controllers available: 1) flat-ground trotting [30]
and 2) vision-based planned-step static walking [31]. Since the
trotting controller moves at approximately 8 times faster speeds
than the static walking controller, we used a cost multiplier of
8 for walking-annotated regions. This means that the cost of
1 meter on a trotting-annotated region is 1, but on a walking-
annotated region it is 8.

Fig. 5 shows paths around a 20cm-high barrier on the ground.
It shows how the planner produces paths that go around the
barrier when the robot is sufficiently close to its end, but over
the barrier when far away. Fig. 6 shows a long-range example,
where the path goes around a building for a longer distance
instead of going inside and outside the building in a shorter-
distance straight path. Going through the building involves
slow walking over the stairs to go in and out, when compared
to the time required to go around the structure on a flat area
while trotting. In this case the predicted travel time would be
3.7 higher going through the building instead of around it,
despite the shorter distance.

D. Full execution in simulation

In the next experiment we tested the execution of the full
system of Fig. 2 which includes high-level planning, local-
map planning and controller switching. We conducted the
experiment in the Gazebo simulator in ROS. The robot started
in the middle of the (approximate simulation model of the) FSC
oil rig facility and we gave the high-level planner a goal inside
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TABLE I: Benchmark of success rates and path lengths in NavMeshes vs PRMs and RRTs.
Same-floor problems Different-floor problems

Planner Pre-computation time (s) Planning time (ms) Success rate Path length lPlanner
lNavMesh

Success rate Path length lPlanner
lNavMesh

NavMesh 8.6 0.858 ± 0.791 100 / 100 1.00 ± 0.00 100 / 100 1.00 ± 0.00
PRM* 10.0 100 82 / 100 1.13 ± 0.31 00 / 100 -
PRM* 10.0 10000 83 / 100 1.13 ± 0.30 00 / 100 -
PRM* 360.0 100 91 / 100 1.02 ± 0.03 40 / 100 1.29 ± 0.36
PRM* 360.0 10000 91 / 100 1.01 ± 0.03 40 / 100 1.29 ± 0.36
PRM* 3600.0 10 03 / 100 1.00 ± 0.01 08 / 100 0.91 ± 0.17
PRM* 3600.0 100 97 / 100 1.00 ± 0.07 96 / 100 1.02 ± 0.22
PRM* 3600.0 10000 97 / 100 1.00 ± 0.07 96 / 100 1.02 ± 0.22
RRTConnect 0.0 100 09 / 100 1.59 ± 0.32 00 / 100 -
RRTConnect 0.0 10000 88 / 100 2.08 ± 0.88 00 / 100 -
RRT* 0.0 100 04 / 100 1.44 ± 0.27 00 / 100 -
RRT* 0.0 10000 10 / 100 1.16 ± 0.19 00 / 100 -

A

Fig. 5: The influence of controller-reasoning in the NavMesh.
The robot either climbs over or trots around a barrier (A)
depending on the distance to its end.

Fig. 6: The advantage of controller-reasoning in the NavMesh.
Left: a least-distance path goes through buildings which require
stair-climbing and few trotting. Right: the controller-aware path
is of longer distance but 3.7 times faster to execute, since it
goes around the buildings on long trotting periods.

one of the buildings. In addition, we added to the environment
an object that was not present in the navigation mesh. Fig. 7
shows the robot trotting outside the building and adding virtual
obstacles to the navigation mesh, indicated as red cylinders, as

it fails to locally plan to follow the global path. The robot then
navigates around the new object and successfully climbs the
stairs to access the inside of the building. Finally it walks to
reach the desired goal. A video of the experiment is included
in the attachment.

E. Long-range executions on the real robot

We conducted a set of field trials at the FSC oil rig (Fig. 1).
In the first experiment the robot was placed on flat ground
and given a goal around the facility, in a location that requires
going inside and then navigating a set of containers connected
through narrow passages. A zoom-up of the location is shown
in Fig. 8, together with the trajectory executed by the robot
(given by the localization system). The figure shows the robot
trotting to the entrance, walking over the steps, navigating
the containers, and exiting the structure through another set
of steps on a distant side of the facility. The total traveled
distance was 29 meters. Path-planning within the NavMesh
took consistently 1ms throughout the execution.

For our second experiment the robot was placed outside on
flat ground and given a goal straight ahead on the other side
of the facility, after the 20cm barrier previously described in
Sec. V-C. We set a goal close to the end of the barrier on
purpose, so that a plan is produced that walks around the barrier
instead of the shorter-distance option of climbing over—as in
the experiment of Sec. V-C. Fig. 9 shows the path the robot
takes, straight on flat ground, around the pillars and staircases
and then around the barrier to reach the goal. The total traveled
distance was 33 meters. Path-planning within the NavMesh
took less than 1ms throughout.

Finally, we placed the robot in front of the same barrier
but further away from its end, as in Fig. 5. The robot was
given a goal straight ahead. Fig. 10 shows the robot trotting up
to the barrier, walking over it using the vision-based walking
controller and then trotting to the goal.

VI. CONCLUSION AND DISCUSSION

We proposed the use of navigation meshes as a high-level
planning tool for long-range legged locomotion. We proposed
a way to automatically annotate and build these structures in
a way that is relevant to the multi-controller nature of legged
robots. We integrated NavMeshes with high- and low-level
planners that deal with long- and short-term reasoning, as
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Fig. 7: Full execution in a simulated version of the FSC oil rig environment. Yellow lines indicate the shortest-path to the goal
as computed in the NavMesh. The large box that the first paths go through was not modeled in the original NavMesh. Red
cylinders indicate virtual obstacles added to the NavMesh on-line. The red sphere indicates the goal.

Fig. 8: Experiment 1 at the FSC oil rig site. The first image shows the original point cloud and navigation mesh (cropped for
visibility) overlapped with the executed path given by localization.

Fig. 9: Experiment 2 at the FSC oil rig. The first image shows the original cloud, navigation mesh, and executed path given by
localization. The robot trots through the facility and around a 20cm barrier to reach a goal close its end.

well as a way to switch between controllers and deal with
unmodeled or new obstacles. We compared the performance
of path-finding in NavMeshes against traditional sampling-
based planners and quantitatively showed the superiority of
NavMeshes—they are both faster to build and query than
PRMs, as well as finding more paths. We concluded with a
demonstration of the usefulness of such a system in real-world
large-scale locomotion examples in an industrial facility.

In future work, we aim to tackle two of the limitations
of the current system. One is the mesh reconstruction step,
where because of point cloud noise can lead to narrow
passages becoming even narrower on the reconstructed mesh
and NavMesh. Currently this means that either robot-cylinder
radii have to be made smaller than the actual robot for planning
to be possible, or post-processing of the point cloud must be
done to clean narrow passages before mesh reconstruction

(we used the former in this paper). In the future we will
investigate better mesh reconstruction methods for this purpose.
Another limitation of our approach is the cylindrical robot
approximation in NavMeshes—which implies that NavMesh
paths are not guaranteed to be executable in general and
especially for long robots such as quadrupeds on narrow turns.
To alleviate this issue we are considering a path-verification
step of path planning or NavMesh-construction to identify such
cases and obtain alternative paths. A limitation of the per-point
assignment method is that it again uses statistics in a spherical
region around the points, which can lead to conservative gait
choices on narrow corridors if the sphere’s size is large. Other
interesting research directions include online NavMesh building,
and the use of NavMeshes for sampling-bias or cost-heuristics
in sampling and search-based multi-gait planning methods such
as [1]. We also plan to improve the gait assignment method to
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Fig. 10: Experiment 3 at the FSC oil rig. The first image shows the original cloud, navigation mesh, and executed path given
by localization. The robot climbs over a 20cm barrier when far away from its end.

include the consideration of physical properties of the terrain
such as friction, similarly to what is done in [32], [33].
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