
Explaining plans at scale: scalable path planning explanations in navigation
meshes using inverse optimization

Martim Brandão∗ and Daniele Magazzeni
King’s College London

{martim.brandao, daniele.magazzeni}@kcl.ac.uk

Abstract
In this paper we propose methods that provide ex-
planations for path plans, in particular those that
answer questions of the type “why is path A op-
timal, rather than path B which I expected?”. In
line with other work in eXplainable AI Planning
(XAIP), such explanations could help users bet-
ter understand the outputs of path planning meth-
ods, as well as help debug or iterate the design of
planners and maps. By specializing the explana-
tion methods to path planning, using optimization-
based inverse-shortest-paths formulations, we ob-
tain drastic computation time improvements rela-
tive to general XAIP methods, especially as the
length of the explanations increases. One of the
claims of this paper is that such specialization
might be required for explanation methods to scale
and therefore come closer to real-world usability.
We propose and evaluate the methods on large-
scale navigation meshes, which are representations
for path planning heavily used in the computer
game industry and robotics.

1 Introduction
Path planners are traditionally not self-explanatory about
their output. The result of successfully running a path planner
is only a path, and so users may have problems understanding
why a path is different from what was expected. Developers
themselves may also have trouble debugging a large graph
over which planning is run, for example in case they want
a certain path to become optimal in the next version of the
model.

Domain-independent methods for eXplainable AI Plan-
ning (XAIP), such as the Model Reconciliation work of
[Chakraborti et al., 2017], are theoretically also applicable
to path planning. However, as we will argue in this paper,
they currently lack the heuristics and domain-knowledge that
would allow them to scale in large-scale problems in path
planning. Computation speed is a requirement for interactive
interfaces, for example when planners are used in human-in-
the-loop designs, when safety-critical robots are deployed in

∗Contact Author

Figure 1: A user asks why the shortest path on a navigation mesh is
the path in orange, and not the one in green (provided by the user).
Each polygon is represented by a vertex in a graph (small spheres)
and is connected by edges to other walkable vertices. Each NavMesh
polygon can be of different terrain-types: “easy” (blue) or “hard”
(red) that correspond to a different cost-per-distance.

dynamic environments, or when a speedy or interactive inves-
tigation of planner behavior is desirable.

In this paper we explore the connection between path plan-
ning explanations and the inverse shortest path problem [Bur-
ton and Toint, 1992; Ahuja and Orlin, 2001] on a specific
set of types of explanation. We show that this framing al-
lows to formulate explanation problems as numerical opti-
mization, and thus leverage the speed of commercial op-
timization solvers. We focus on path planning problems
in navigation meshes (NavMeshes) [Van Toll et al., 2016;
Mononen, 2014] which are popular representations of 2D and
3D environments used in real-world computer game products
[MobyGames, 2019] and robotics applications [Brandao et
al., 2020].

In summary our contributions are the following:

• We show that explanations of path plans of the type
“why is the shortest path A, rather than B?” can be for-
mulated as inverse-shortest path problems;

• We propose two optimization-based formulations to pro-
vide explanations in NavMeshes;

• We show that solving these problems with commercial
optimization solvers leads to fast and scalable compu-
tation of explanations compared to domain-independent
XAIP methods.

We evaluate the method in realistic large-scale path planning
problems inspired by real-world robotics and computer-game
domains.

One of the main take-away messages of the paper is that,
while current explainable AI planning methods are general
and thus widely applicable, they do not scale. Specializing
explanation methods to specific planning domains can lead to
drastic computation improvements in domains such as path
planning, and thus contribute to real-world use.

2 Related work
This work is related to recent research in “Model Reconcilia-
tion” [Chakraborti et al., 2017] for general AI Planning tasks,
which involves computing differences between the user’s and
planner’s model of the problem. This could be, for exam-
ple, a minimum set of changes to apply to the user’s model
so that the planner’s path becomes optimal in that model. In
[Chakraborti et al., 2017], these differences are computed by
searching directly in the space of models, i.e. building a tree
that starts at the human’s model of the problem and adds or
removes a precondition, an effect, or initial state entry at each
node, until arriving at a model where the planner’s path is op-
timal. This process is complete but time-consuming, which is
why in this paper we explore the use of optimization tools for
speeding up the process in path planning. Therefore, we are
here providing a specialization of model reconciliation meth-
ods to path planning. Our methods are also specialized in a
different sense. We assume a particular configuration of the
reconciliation process—that the human’s model is not known,
and we wish to obtain the minimum changes from the plan-
ner’s model that lead to the shortest-path being the human’s
desired one.

Work in XAIP has also dealt with abstracted lower-
dimensional model search spaces, both for explanations of
model differences [Sreedharan et al., 2018] and explanations
of planner failure [Sreedharan et al., 2019]. Similar abstrac-
tions have also been explored in the motion planning liter-
ature [Brandao and Havoutis, 2020], however with the goal
of speeding up motion planning itself. In this paper we
provide two alternative explanation methods specialized for
path planning in navigation meshes, one of which is low-
dimensional—related to the cost-per-distance of each terrain
of a navigation mesh.

The “explicability” of a plan is a concept introduced by
[Zhang et al., 2017; Sreedharan et al., 2017], and relates to
the degree to which a planner’s plan is close to the human’s
desired plan [Chakraborti et al., 2019]. Here we also eval-
uate the explicability of produced plans, using a metric that
is more suitable to path planning—Fréchet distance [Alt and
Godau, 1995], which computes the similarity of curves in any
dimension.

Another related body of research is on explanations for
Multi-Agent Path Finding [Almagor and Lahijanian, 2020],
where the goal is to obtain an intuitive explanation for why
the agents’ paths are non-colliding; and on explanations for
continuous-space motion planning [Hauser, 2014; Kwon et
al., 2018], which give reasons for the failure to obtain a
path. In this paper, however, we focus on a different type

of explanation—explanation of the optimality of a path—that
answers questions of the type “why is path A optimal, rather
than B?”. We show that such explanations are related to the
problem of inverse shortest paths [Burton and Toint, 1992;
Zhang and Pavone, 2016], which looks for a minimal change
to graph weights that leads to a desired path being optimal.

Our work targets a specific type of path planning
problems—planning on navigation meshes [Mononen, 2014;
Van Toll et al., 2016; Brandao et al., 2020]. We focus on this
particular representation of environments since it is widely
and heavily used in computer games [MobyGames, 2019] and
robotics [Brandao et al., 2020], therefore increasing the po-
tential for real-world impact and usefulness. Additionally, the
structure of the path planning problem in NavMeshes is inter-
esting due to the existence of terrain types, which make the
inverse shortest paths problem combinatorial—thus requir-
ing the use of Mixed-Integer Linear Programming (MILP)
solvers.

3 Background

3.1 Shortest path

Let G = (V,E,W) be a (directed) graph with vertices
vi ∈ V , edges ej ∈ E, and a weight wj ∈ W associated
with each edge. An edge ej connects vs(j) ∈ V to vt(j) ∈ V ,
where s(j) is the index of the origin vertex, and t(j) is the in-
dex of the target vertex of the edge. For convenience, weights
can also be written as w(ej). The shortest path p∗ is a se-
quence of consecutive edges p∗ = (e1, ..., en) , of any pos-
sible length n, starting at vstart and ending at vgoal, that mini-
mizes

∑n
k=1 w(ek).

The problem can also be formulated as a linear program
(LP) [Ahuja et al., 1993]:

min
x∈R|V |

0+

wTx, s.t. Ax = b, (1)

where xj is equal to 1 if ej belongs to the shortest path, and
0 otherwise. Aij is equal to 1 if s(j) = i (i.e. ej leaves vi),
-1 if t(j) = i, and 0 otherwise. Finally, bi is equal to 1 if
vi = vstart, -1 if vi = vgoal, and 0 otherwise. The intuition
behind this LP is that we pick a set of edges with minimum
cost that connect the origin and target nodes (i.e. all nodes
except origin and target have the same number of input and
output edges). The LP is integral, meaning that an optimal
solution will have x with components equal to either 0 or 1
[Ahuja et al., 1993].

3.2 Inverse shortest path

The inverse of problem (1) is when we wish to obtain a new
weight vector w′ that leads to a desired shortest-path p′ cor-
responding to a desired x′, with the goal of w′ being as close
as possible to w. This is also an LP [Ahuja and Orlin, 2001]

which can be written as:

min
w′,π,λ

||w′ − w||1 (2a)

s.t.
∑
iAijπi = w′j ∀j:x′

j=1 (2b)∑
iAijπi + λj = w′j ∀j:x′

j=0 (2c)

π ∈ R|V | (2d)

λ ∈ R|E| (2e)
λj ≥ 0 ∀j:x′

j=0 (2f)

w′ ∈ R|E|+ . (2g)

3.3 Navigation meshes

In navigation meshes, graph vertices represent physical lo-
cations that lie either on the center or the border of walka-
ble polygons. Edges in turn represent the possibility of nav-
igating between two adjacent locations. Navigation mesh
graphs are of a particular structure (see Figure 1). Each
vertex vi is associated with a geometric position zi ∈ R3,
and each edge ej is associated with an Euclidean distance
dj = ||zt(j) − zs(j)||. Additionally, each vertex vi is either
at the center of a navigation-mesh polygon, or at the center
of the intersection between two polygons—usually called a
“portal”. The set of non-portal vertices is V r ⊂ V . Each
polygon in the NavMesh (i.e. each non-portal vertex) is as-
sociated with a terrain-type k = {1, ...,K}, and each terrain
type is associated with a cost-of-transport ck ∈ R+ (i.e. a
cost per distance travelled). This means that, for example,
moving on an edge ej which lies on a polygon of terrain-type
kexample requires a weight wj = djckexample .

We can represent the terrain-types of all non-portal vertices
using l ∈ {0, 1}K|V r|, where lk,i is equal to 1 if vertex vi is of
terrain-type k, and 0 if it is not. Let P (vi) = {0, 1} indicate
whether vi is a portal or not, and r(j) = {k ∈ {s(j), t(j)} :
P (vk) = 0} be a function that maps an edge index to the
index of its non-portal vertex. Weights in NavMesh graphs
are thus of the following form:

wj =
∑K
k=1 djcklk,r(j). (3)

4 Method
We wish to provide explanations for questions of the type
“why is path p∗ optimal, rather than p′?”. Following the work
of [Wachter et al., 2017], we compute actionable counter-
factual explanations for such questions—which means pro-
viding an alternative possible worldG′ that is as close as pos-
sible to G but in which p′ would be optimal. In other words,
a user provides a path p′ that they desire or that they had ex-
pected, and the method explains the map changes that would
have to take place for that path to be optimal.

Given the structure of NavMeshes, we can either compute
new terrain-type assignments l′ or new values of the costs-
per-distance c′.

4.1 Terrain-type explanation
Obtaining a new terrain-type assignment l′ ∈ {0, 1}K|V r|

that satisfies a desired shortest-path is an inverse shortest path
problem similar to (2), which now becomes a Mixed-Integer
Linear Programming (MILP) problem we call Terrain-MILP.

Terrain-MILP:
min
l′,π,λ

||l′ − l||1 (4a)

s.t.
∑
iAijπi =

∑
k djckl

′
k,r(j) ∀j:x′

j=1 (4b)∑
iAijπi + λj =

∑
k djckl

′
k,r(j) ∀j:x′

j=0 (4c)

π ∈ R|V | (4d)

λ ∈ R|E| (4e)
λj ≥ 0 ∀j:x′

j=0 (4f)

l′ ∈ {0, 1}K|V
r| (4g)∑

k l
′
k,i = 1 ∀i, (4h)

This formulation minimizes the number of nodes with terrain
changes in (4a). Lines (4b-4f) are inverse shortest path con-
straints that correspond to those in (2b-2f), but where edge
weights are expressed as a function of node terrain-types l′.
Lines (4g-4h) enforce a single terrain-type per node.

4.2 Costs-of-transport explanation
The other kind of explanation involves finding out counter-
factual values for the per-terrain cost-of-transport vector c ∈
RK+ that would satisfy the desired path. This involves solving
the following problem:

COT-MILP:
min
c′,π,λ

||c′ − c||1 (5a)

s.t.
∑
iAijπi =

∑
k djc

′
klk,r(j) ∀j:x′

j=1 (5b)∑
iAijπi + λj =

∑
k djc

′
klk,r(j) ∀j:x′

j=0 (5c)

π ∈ R|V | (5d)

λ ∈ R|E| (5e)
λj ≥ 0 ∀j:x′

j=0 (5f)

c′ ∈ RK+ , (5g)

where constraints are the same as in Terrain-MILP, but the
variable is now c′. Note that, as we will show in the Experi-
ments section, this problem will often be infeasible due to the
low flexibility of the search space (i.e. c′).

4.3 Metrics
We will use two metrics to characterize explanations:
• Explanation length: this is used as a proxy of complex-

ity. We compute it as the number of terrain changes
||l′−l||1/2 in terrain-type explanations, and as ||c′−c||1
in cost-of-transport explanations.
• Explicability distance: this measures the degree to

which an explanation actually leads to the optimal path
being the desired. We compute this as the Fréchet dis-
tance between the the two paths D(p′, p∗new), where p∗new
is the shortest path on the new graph G′.

5 Experiments
5.1 Experimental setup
For the experiments in this paper we used the map of a large
building, of which the 3D model is publicly available—the
Barcelona Robotics Laboratory1. The 3D model consists of
a campus of multiple buildings and outside corridors, stairs,
lamp posts, etc. The NavMesh of this model is shown in Fig-
ure 1. There are multiple ways to cross the campus (around
through the left, right, or by crossing the patio and climbing
the stairs) and the optimal path depends on both distance and
the cost of travelling on stairs vs flat ground. The hypothetical
use case is of a robot that moves throughout campus running
errands, delivering packages or guiding visitors, similar to
[Rosenthal and Veloso, 2012]. This could be a wheeled mo-
bile robot with tracks, or a legged robot with stair-climbing
functionality such as in [Brandao et al., 2020].

We ran the procedure in [Brandao et al., 2020] to auto-
matically generate terrain-type assignments to the model2.
The procedure uses measurements of local curvature to as-
sign a terrain-type, and leads to an assignment of terrain type
1 (“easy”) to flat ground and 2 (“hard”) to stairs and areas
that are close to walls and obstacles. We assume the cost-
of-transport of the hypothetical robot to be 1 unit per meter
on easy terrain and 8 units per meter on hard terrain. We
use the Recast toolkit [Mononen, 2014] to generate a navi-
gation mesh from this model and run planning and explana-
tion methods on the underlying graph. The graph is of size
|V | = 4935 and |E| = 6056.

To solve Terrain-MILP and COT-MILP we use the com-
mercial solver MOSEK3 on the Python optimization interface
cvxpy [Diamond and Boyd, 2016]. On the NavMesh used
for our experiments, Terrain-MILP consists of 24675 scalar
variables, 3814 integer variables and 33707 constraints; while
COT-MILP has 17087 scalar variables and 26119 constraints.
Measured computation times in this paper include problem
construction time, which is responsible for most of the com-
putation (around 60 seconds on average).

5.2 Example explanations
Figure 2 shows three examples of explanations obtained by
our methods. We will call these examples Problem 1-3.

In Problem 1 (Figure 2a), the shortest path between two
points in the map is shown in orange. It involves going around
a stair-area (“hard” terrain, shown in red), and around a build-
ing (empty space in white) through the right until the goal (in
the top of the image). A user then provides the green path
and asks why that was not the shortest path instead. The mo-
tivation for asking this question could be a wish to understand
the reasoning behind the planner (i.e. update the user’s mental
model of the problem). Another option could be that the user
is a developer that is debugging the robot’s model and behav-
ior. The developer believes the robot should actually take this
path, and therefore wishes to know the minimal changes to

1http://www.iri.upc.edu/research/webprojects/pau/datasets/
BRL/

2https://github.com/ori-drs/gaitmesh
3https://www.mosek.com/

Problem Method Expl. Dist. Comp.
length to B time

Prob 1 COT-MILP 1 0 58.2
Terrain-MILP 14 0 66.5

Prob 2 COT-MILP 2 10.1 72.2
Terrain-MILP 34 0 69.6

Prob 3 COT-MILP 2 9.6 73.5
Terrain-MILP 19 0 73.6

Table 1: Comparison between cost-of-transport and terrain-type ex-
planations

apply to the map in order to make sure that becomes the new
preferred path.

Figure 2b shows the terrain-based explanation Terrain-
MILP. With these new terrain assignments, the shortest path
does indeed become the user’s preference. As the figure
shows, only polygons along the stairs would need to change
terrain-type in order for the user’s path to become optimal
(one polygon is on the stairs on the bottom of the figure, the
other polygons on the stairs near to the top). The alterna-
tive cost-of-transport-based explanation COT-MILP, shown
in Figure 2c, would basically reveal that increasing the cost-
of-transport of “easy” terrain to 3.15 would be enough to
make the user’s path optimal. This case would not involve
any change of terrains. As Table 1 shows , this corresponds
to a change of 1 variable (instead of the 14 terrain changes in
the terrain-type explanation).

Cost-of-transport solutions are, however, not always ap-
plicable. For example in Problem 2 (Figure 2d), the user
asks why the shortest path does not go around an obstacle
(small white gap) through the left and then use the stairs.
Our terrain-type explanation method can find a change of
terrain assignments that would lead to such a shortest path
(Figure 2e). However, the cost-of-transport formulation is in-
feasible here and we can thus only find a shortest path that
is close to the desired one, but not the same. The Fréchet-
distance between this path and the desired one is 10.1 meters
(Table 1).

Problem 3 (Figure 2g), which was obtained by assuming a
cost-of-transport of 50 for “hard” terrain, is similar to Prob-
lem 2 in that the terrain-type explanation method finds a 0-
distance solution, but the cost-of-transport explanation is in-
feasible (distance 9.6m).

Finally, even if our terrain-type-explanation method in-
volves solving a MILP, its solving time was similar to that
of the cost-of-transport method, and across all problems—
around 60-70s as shown in Table 1.

5.3 Scalability
We will now see that the computation times of Terrain-
MILP, shown in Table 1, are considerably faster than domain-
independent model search methods used in Model Reconcili-
ation [Chakraborti et al., 2017], especially as the explanation
length increases.

To compare our method to general Model Reconciliation
methods in XAIP, we implemented A* model search as in

http://www.iri.upc.edu/research/webprojects/pau/datasets/BRL/
http://www.iri.upc.edu/research/webprojects/pau/datasets/BRL/
https://github.com/ori-drs/gaitmesh
https://www.mosek.com/

(a) Question: “why path A not B?” (why or-
ange path not green?)

(b) Terrain-type explanation: “B would re-
quire a change in terrain labels such as this”

(c) Cost-of-transport explanation: “B would
require cost(blue)≥ 3.15”

(d) Question: “why path A not B?” (why or-
ange path not green?)

(e) Terrain-type explanation: “B would require
a change in terrain labels such as this”

(f) Cost-of-transport explanation: (infeasible)

(g) Question: “why path A not B?” (why or-
ange path not green?)

(h) Terrain-type explanation: “B would re-
quire a change in terrain labels such as this”

(i) Cost-of-transport explanation: (infeasible)

Figure 2: Three example problems (one per line) where a user asks “why is path A the shortest, and not path B?” by providing the expect-
ed/desired path B. A is shown in orange, B in green. The second column shows our terrain-type explanations (terrain changes highlighted),
while the third column shows cost-of-transport explanations. The red paths shown in the center and right columns are the shortest-paths in
the new models, which might not be equal to the desired path in green (indicating failure to solve the optimization problem exactly).

[Chakraborti et al., 2017]. We initially used the official im-
plementation4. However, the runtime was too slow for even
the smallest problems due to the use of AI Planning solvers
(Fast Downward and VAL). Therefore, to be fair to the algo-
rithm we replaced the solution routines by Dijkstra shortest-
path computations, which run in a fraction of the computa-
tion time. The rest of the implementation used was as in
[Chakraborti et al., 2017]—each state in the search tree is
a full model (i.e. a NavMesh graph), and each expansion in-
volves switching one terrain label for another. The process
continues until we arrive at the goal state (i.e. until the de-
sired path is the shortest). The same heuristic state expan-
sion as proposed in [Chakraborti et al., 2017] is also used for
speed. Note that this assumes a particular Model Reconcili-
ation process, where the human’s mental model is not neces-

4https://github.com/TathagataChakraborti/mmp/

sarily known, and we want to find the model that is closest to
ground-truth but where the shortest path is the user’s desired
one.

When A* model search succeeds to find an explanation,
this explanation is the same as what is obtained by our
Terrain-MILP method. However, the combinatorial nature of
the problem leads to an exponential increase in computation
time with explanation length, as shown in Figure 3. Each
point in the figure corresponds to a different problem (Prob-
lem 1 and two variations with different values of c; Problems
1 and 3 were excluded since they took longer than 2 hours to
compute). As the figure shows, the use of commercial MILP-
specialized solvers leads to a constant solve time, compared
to a much higher time for A* model search.

These results show that in order for explanation methods to
scale, it might be required to specialize the algorithm to spe-
cific problem instances—instead of using general explanation

8 9 10 11 12 13 14
Explanation length (# label changes)

0

500

1000

1500

2000

2500

3000

3500
C

om
pu

ta
ti

on
 t

im
e

(s
)

A* model search
MILP (ours)

Figure 3: Scalability of the inverse shortest path formulation (ours)
vs A* model search (domain independent method).

algorithms.

6 Conclusion
In this paper we introduced optimization-based methods for
solving two types of explanation on navigation meshes—
cost-of-transport and terrain-type explanations. Using these
methods we obtain explanations for the optimality of a path
on a navigation mesh, i.e. a user may provide an alternative
path and ask why it is not optimal, and the methods compute
minimal changes to the model that lead the user’s path to be-
come optimal. These explanations are therefore actionable
counter-factual explanations in the style of [Wachter et al.,
2017]—they provide users with suggestions for map changes
that lead expected paths to become optimal.

In this paper we showed examples of both types of expla-
nation. We did not, however, study the effectiveness of each
at improving users’ understanding of the model—and this is
an important future direction of research.

The terrain-type explanation method involves solving a
MILP problem, and is basically a specialization of model rec-
onciliation methods from eXplainable AI Planning (XAIP)
to path planning. This specialization comes with the ben-
efit of increased speed and scalability due to the applica-
bility of commercial MILP solvers. We showed that with
such solvers we can compute explanations for path planning
at approximately constant computation times, while the A*
model search method employed by state-of-the-art domain-
independent XAIP methods [Chakraborti et al., 2017] needs
exponentially higher computation times as the explanation
length increases. We believe optimization solvers could also
be leveraged for more general task planning problems, and
another direction for future research is on the use of MILP-
formulations for solving domain-independent XAIP prob-
lems.

One more conclusion from this paper is that some types
of explanation cannot answer a question exactly (i.e. are
not “explicable” in the sense of [Zhang et al., 2016]). The
counter-factual model used as an explanation may have a
shortest path that is closer to the user’s desired path but

not exactly the same. This may be undesirable, since it
does not explain the desired path exactly, but it may also
be desirable in some contexts. For example, it may be hard
for users to specify (or “draw”) their desired paths exactly,
and such an explanation could help users clarify their ques-
tions. Additionally, computing a set of explanations of vary-
ing complexity-explicability trade-offs could also potentially
help users understand the model. These ideas are related to
those of explicability-explainability trade-offs [Sreedharan et
al., 2017] but deserve further study in the context of path
planning, human-AI teaming, and explanation interfaces.

Acknowledgments
This work was supported by the Air Force Office of Scientific
Research under award number FA9550-18-1-0245.

References
[Ahuja and Orlin, 2001] Ravindra K. Ahuja and James B.

Orlin. Inverse optimization. Operations Research,
49(5):771–783, 2001.

[Ahuja et al., 1993] Ravindra K Ahuja, James B Orlin, and
Thomas L Magnanti. Network flows: theory, algorithms,
and applications. Prentice-Hall, 1993.

[Almagor and Lahijanian, 2020] Shaull Almagor and
Morteza Lahijanian. Explainable multi agent path finding.
In 19th International Conference on Autonomous Agents
and Multi-agent Systems (AAMAS), 2020.

[Alt and Godau, 1995] Helmut Alt and Michael Godau.
Computing the fréchet distance between two polygonal
curves. International Journal of Computational Geome-
try & Applications, 5(1-2):75–91, 1995.

[Brandao and Havoutis, 2020] Martim Brandao and Ioannis
Havoutis. Learning sequences of approximations for hi-
erarchical motion planning. In 30th International Confer-
ence on Automated Planning and Scheduling (ICAPS), Jun
2020.

[Brandao et al., 2020] Martim Brandao, Omer Burak Al-
adag, and Ioannis Havoutis. Gaitmesh: controller-aware
navigation meshes for long-range legged locomotion plan-
ning in multi-layered environments. IEEE Robotics and
Automation Letters, 5(2):3596–3603, 2020.

[Burton and Toint, 1992] Didier Burton and Ph L Toint. On
an instance of the inverse shortest paths problem. Mathe-
matical programming, 53(1-3):45–61, 1992.

[Chakraborti et al., 2017] Tathagata Chakraborti, Sarath
Sreedharan, Yu Zhang, and Subbarao Kambhampati. Plan
explanations as model reconciliation: Moving beyond
explanation as soliloquy. In 26th International Joint
Conference on Artificial Intelligence (IJCAI), 2017.

[Chakraborti et al., 2019] Tathagata Chakraborti, Anagha
Kulkarni, Sarath Sreedharan, David E Smith, and Sub-
barao Kambhampati. Explicability? legibility? pre-
dictability? transparency? privacy? security? the
emerging landscape of interpretable agent behavior. In
29th International Conference on Automated Planning
and Scheduling (ICAPS), volume 29, pages 86–96, 2019.

[Diamond and Boyd, 2016] Steven Diamond and Stephen
Boyd. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Re-
search, 17(83):1–5, 2016.

[Hauser, 2014] Kris Hauser. The minimum constraint re-
moval problem with three robotics applications. The Inter-
national Journal of Robotics Research (IJRR), 33(1):5–17,
2014.

[Kwon et al., 2018] Minae Kwon, Sandy H Huang, and
Anca D Dragan. Expressing robot incapability. In 2018
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), pages 87–95, 2018.

[MobyGames, 2019] MobyGames. Games using recast.
https://www.mobygames.com/game-group/middleware-
recast, 2019.

[Mononen, 2014] Mikko Mononen. Recast navigation.
https://github.com/recastnavigation/recastnavigation,
2014.

[Rosenthal and Veloso, 2012] Stephanie Rosenthal and
Manuela Veloso. Mobile robot planning to seek help
with spatially-situated tasks. In 26th AAAI Conference on
Artificial Intelligence (AAAI), 2012.

[Sreedharan et al., 2017] Sarath Sreedharan, Subbarao
Kambhampati, et al. Balancing explicability and expla-
nation in human-aware planning. In 2017 AAAI Fall
Symposium Series, 2017.

[Sreedharan et al., 2018] Sarath Sreedharan, Siddharth Sri-
vastava, and Subbarao Kambhampati. Hierarchical exper-
tise level modeling for user specific contrastive explana-
tions. In 27th International Joint Conference on Artificial
Intelligence (IJCAI), pages 4829–4836, 2018.

[Sreedharan et al., 2019] Sarath Sreedharan, Siddharth Sri-
vastava, David Smith, and Subbarao Kambhampati. Why
can’t you do that hal? explaining unsolvability of planning
tasks. In 28th International Joint Conference on Artificial
Intelligence (IJCAI), 2019.

[Van Toll et al., 2016] Wouter Van Toll, Roy Triesscheijn,
Marcelo Kallmann, Ramon Oliva, Nuria Pelechano, Julien
Pettré, and Roland Geraerts. A comparative study of navi-
gation meshes. In 9th International Conference on Motion
in Games, pages 91–100. ACM, 2016.

[Wachter et al., 2017] Sandra Wachter, Brent Mittelstadt,
and Chris Russell. Counterfactual explanations without
opening the black box: Automated decisions and the gdpr.
Harvard Journal of Law & Technology, 31, 2017.

[Zhang and Pavone, 2016] Rick Zhang and Marco Pavone.
Control of robotic mobility-on-demand systems: a
queueing-theoretical perspective. The International Jour-
nal of Robotics Research (IJRR), 35(1-3):186–203, 2016.

[Zhang et al., 2016] Yu Zhang, Sarath Sreedharan, Anagha
Kulkarni, Tathagata Chakraborti, Hankz Hankui Zhuo, and
Subbarao Kambhampati. Plan explicability for robot task
planning. In RSS Workshop on Planning for Human-
Robot Interaction: Shared Autonomy and Collaborative
Robotics, 2016.

[Zhang et al., 2017] Yu Zhang, Sarath Sreedharan, Anagha
Kulkarni, Tathagata Chakraborti, Hankz Hankui Zhuo,
and Subbarao Kambhampati. Plan explicability and pre-
dictability for robot task planning. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 1313–1320. IEEE, 2017.

	Introduction
	Related work
	Background
	Shortest path
	Inverse shortest path
	Navigation meshes

	Method
	Terrain-type explanation
	Costs-of-transport explanation
	Metrics

	Experiments
	Experimental setup
	Example explanations
	Scalability

	Conclusion

