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Abstract— In this paper we investigate and characterize social
fairness in the context of coverage path planning. Inspired
by recent work on the fairness of goal-directed planning,
and work characterizing the disparate impact of various AI
algorithms, here we simulate the deployment of coverage robots
to anticipate issues of fairness. We show that classical coverage
algorithms, especially those that try to minimize average waiting
times, will have biases related to the spatial segregation of
social groups. We discuss implications in the context of disaster
response, and provide a new coverage planning algorithm that
minimizes cumulative unfairness at all points in time. We
show that our algorithm is 200 times faster to compute than
existing evolutionary algorithms—while obtaining overall-faster
coverage and a fair response in terms of waiting-time and
coverage-pace differences across multiple social groups.

I. INTRODUCTION

Coverage planning is an important problem with applica-
tions in inspection, surveillance, disaster response and other
domains. Many of these applications are socially charged: for
example, search missions in disaster response need to cover
whole impacted areas but they also need to respect aspects of
priority and fairness [1], [2]. Disaster response missions are
also expected to attend to the most-at-risk first [2], [3], [4],
and not to penalize already-marginalized communities [5].
Similarly, wildfire tracking [6], surveillance [7] and security
[8] can also affect different communities differently and thus
lead to concerns of fairness.

In this paper we investigate whether existing coverage
planning algorithms can raise concerns of fairness, and
propose a new method to alleviate such issues. We are
inspired by recent work [9] which demonstrated the existence
of a fairness dimension to goal-directed path planning—
particularly its capacity to reinforce spatially-correlated so-
cial inequalities. However, the analysis in [9] does not
translate directly to the coverage problem since by definition
coverage paths will serve the whole population of interest.
As we will show in this paper, what matters in coverage
planning are relative waiting times rather than relative final
coverage of different social groups. Importantly, we show
that coverage paths produced by classical algorithms can lead
to a bias in waiting times. This penalizes spatially segregated
social groups such as ethnic minorities and age-groups living
in lowly-populated areas. Such issues could be fatal to
the acceptance of AI-assisted drone technology in disaster
response, or further fuel existing criticism regarding the
impact that responses have on already-marginalized groups
[5].
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Based on this investigation, in this paper we provide a con-
cept of fairness relevant to the coverage planning problem—
“anytime-fairness”—and we propose a new method that
handles the dimensionality of the problem better than state-
of-the-art evolutionary methods.

Our contributions are the following:
1) We use realistic simulations of robot deployment to

characterize issues of fairness in disaster response
coverage-based robots;

2) We propose a new fairness-aware method for coverage
path planning that is both computationally faster than
state-of-the-art methods, coverage-efficient, and leads
to a balanced distribution of waiting times across social
groups despite spatial segregations.

II. RELATED WORK

Coverage path planning is the problem of computing a
path over a graph that visits all nodes. Many methods have
been proposed to tackle such problem, from Boustrophedon’s
back-and-forth ox-like paths [10] to more recent evolutionary
algorithms [7]. We refer the interested reader to recent
surveys on coverage algorithms [11].

This paper is also related to the work of Brandão et al. [9],
which proposes a new Responsible Innovation methodology
to identify issues of fairness by simulating robot deployment.
Here we take a similar approach to anticipating issues
of fairness: we simulate the deployment of robots using
coverage path planning algorithms, and analyze the relative
impact to different social groups. Compared to [9] we focus
on coverage planning rather than goal-directed planning.
While [9] defines fairness as the match between the social
make-up of a region of interest and the people found along
a robot’s path, such definition is not applicable to coverage
planning—since coverage paths will by definition cover
whole populations. Instead, here we focus on differences
in the order or speed at which social groups are covered.
Additionally, our planning method is based on sampling and
a greedy strategy, which as we will show leads to much faster
computation times and better coverage than a pure extension
of the methods in [9].

Within the loosely-defined planning literature, the concept
of fairness has been applied to Linear Temporal Logic in
socially-agnostic ways [12], [13] (where it refers to serving
multiple regions infinitely often), to vehicle routing work-
loads [14], to logistics problems of train and fleet scheduling
[15], and to doctor scheduling problems [16] to satisfy the
preferences of individual workers. Contrary to the technical
work on planning above, fairness as studied in humanistic



works of disaster response [3], [4], urban planning [17],
environmental justice [18], and fairness-centered work in
machine learning [19], [20], [21] is often concerned less with
personal preferences and more with disparate impact across
socio-economical groups. These groups could be related to
gender, race, poverty, or other attributes relevant to discrim-
ination and marginalization. In this paper our approach is
consistent with the latter notions of fairness at the level
of social groups. We specifically characterize the potential
disparate impact across age and ethnicity groups, though
our method is general and applicable to other categorical
groupings.

While most recent work on fairness in Artificial Intelli-
gence has focused on machine learning and big data [20],
[21], [22], here we use such work as inspiration to analyze
the potential issues of disparate impact in the context of
robot planning algorithms in deployment. Similarly to ML-
centered work, we focus on concerns of social fairness,
discrimination and marginalization, although our datasets are
in the form of government-collected census data [23], and
our disparate impact an emerging feature of socio-economic
factors behind the spatial organization of people [18]. Our
work is similar in motivation to recent research on fairness
within robot navigation [9], [24], though here we focus on
the specific problem of coverage planning.

III. THE PROBLEM: SOCIAL BIAS IN COVERAGE PLANS

In this section we seek to answer the Research Ques-
tion: can rescue coverage paths reinforce social inequalities
present in the spacial organization of cities? This will serve
to inform search and rescue teams deploying search-drones,
as well as to motivate our own coverage algorithm focused
on reducing such bias.

To answer our question we use the Responsible Innovation
methodology proposed by [9]: we use robot deployment
simulations together with real social data to predict issues
of inequality and unfairness. In particular we simulate the
deployment of a victim-search drone using coverage path
planning algorithms on a real map. We use openly-available
census data from the Office for National Statistics in Eng-
land, which includes maps along with spatial distributions
of population density, age, ethnicity and other variables
[23]. The analysis shown here is for the city of Oxford,
UK, for the sake of example—though similar aspects of
spatial segregation of populations related to age, ethnicity,
and socio-economic factors are widespread [18], [17]. The
size of the Oxford map is of 300x300 cells, and each cell is
annotated with total population density, as well as population
per age and ethnicity bin. We assume a drone flying at 50m
height, at a constant speed of 7m/s.

A. Simplistic unconstrained coverage

We first simulate the deployment of robots in the simplistic
setting of coverage without battery limits. In this case algo-
rithms such as Boustrophedon decomposition [10] or spiral-
shaped coverage can be used. Boustrophedon decomposes a
map into cells which are then covered with back-and-forth

(ox-like) paths. Spiral paths simply proceed from the center
of the map and outwards in spiral form, until the whole
map is covered. For Boustrophedon decomposition we use
an open-source implementation1 [25] starting the path from
the center of the map—the location of a fire station as the
hypothetical drone-launching site.

Fig. 1 shows the coverage paths, cumulative population
covered (according to the population density data), and then
indicators of social inequality: per-social-group cumulative
population coverage at particular times (20% of full cov-
erage), and the range of these values throughout time (i.e.
maximum minus minimum of group coverage at each time).
Red lines on the maps are the paths taken by the hypothetical
robot, green-colored areas are cells sensed by the robot,
assuming the robot flies at 50m height with a 90degree
downward-facing camera. Black areas are hence not sensed
by the robot at any time. The city of Oxford has a zero-
population area in the North-West, which is avoided by the
Boustrophedon path, hence leaving an uncovered area in the
map. The figure shows that the spiral-shaped path finds more
people early on, which is due to high population density
in the center of the city, though the Boustrophedon path
eventually covers the full population earlier due to more
efficient planning (fewer paths cross zero-population areas
and already-visited map areas).

Interestingly, the spatial organization of the population is
such that the younger student population (18-24 years) is
concentrated in the center, near university buildings, while
the older population is scattered throughout the rest of
the city. This leads spiral paths to find roughly 70% of
the undergraduate student population at the first one-fifth
of the map, while infant and elderly populations are only
20% covered at this time. This corresponds to the 50%
(70%-20%) visit range peak on the “Group coverage range”
graph. Such inequality could potentially be of concern to
rescue teams, since the elderly and infant populations are
typically of higher risk—but they are only found later on
in the mission, thus decreasing potential survival rates. The
Boustrophedon path leads to a similarly high inequality peak
(35%), since it also begins at the center of the city. The figure
also shows similar inequality in terms of ethnicity: ethnic
minorities such as Black, Indian and Arab are penalized by
the coverage paths. The reason for this is again that the
population in the center is mostly White or Chinese, while
racial minorities such as Black, Arab and Indian populations
are scattered outside the city center in racially segregated
ways due to various historic and economic reasons. Again,
leaving coverage of such groups towards the end could
be concerning to rescue teams. Recent disaster response
missions have been criticized for penalizing racial minorities
and poorer populations, who are from the start less likely to
survive or escape disaster areas on their own due to lower
economic resources [5]. These simulations thus show that
inherent spatial distributions of social groups can lead to a

1https://github.com/18alantom/
CoveragePathPlanning
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Fig. 1. Disparate coverage of age and ethnicity groups in the simplified unlimited-battery coverage planning problem. From left to right, top to bottom:
Boustrophedon coverage plan, spiral coverage plan, cumulative coverage graph, range of coverage values across age groups (i.e. max-minus-min of the
coverage percentage of all groups), the coverage values of all age groups at a particular time (0.20T), range of coverage across ethnicity, coverage of
ethnicity groups at 0.20T.

Fig. 2. Disparate waiting times across age groups in the simplified
unlimited-battery coverage planning problem.

bias in quality of search and rescue missions to these very
groups.

We also estimated average wait-times per age group, i.e.
the average time it takes for a person of a certain group to be
seen by the search-robot. Fig. 2 shows similar group biases
to those seen in Fig. 1.

B. Limited-battery, low-waiting-time coverage

We now consider a more realistic search-and-rescue setting
where the search-drone has limited battery and hence can
only move for a maximum path length in each trip. We
use 10km (500 cells) as the maximum path length as in
other work [26], and assume each trip starts and ends in
the same location (i.e. there is only one launching/charging
station). Finally, the response team wishes to minimize
average waiting time of the whole population, and hence
the coverage algorithm explicitly prioritizes visits to highly

populated areas. We consider two algorithms. The first is
an adaptation of Boustrophedon: we split the map into N
regions, and compute Boustrophedon coverage paths for each
region. Then, the drone visits each region in descending
order of region-population. The second algorithm is the
evolutionary method of [9] with a large number of waypoints
over multiple trips. To obtain low waiting times we set the
maximization objective to the sum of the cumulative covered
population (i.e.

∑T
t=1 Cm,π(t) where Cm,π(t) is the total

population found along path π up to time t over map m; T
is the length of path π). This objective promotes paths that
have large covered populations from early on.

Fig. 3 shows the coverage paths, cumulative population
coverage, and age-coverage fairness metrics. Paths have
considerably more center-directed trips (i.e. radial red lines)
since the drones need to return to the station for charging.
Consistently with other work [7], the evolutionary method
performs considerably better than classical methods—as can
be seen by the population coverage graph. As in the simplis-
tic unconstrained case, there are large degrees of inequality.
Inequality peaks at around 20% of the coverage path as
before and reaches 20 to 35% ranges (e.g. 60% coverage for
young population vs 40% elderly). Although the inequality
is slightly lower than in the unconstrained case, it could
still represent considerable harm in terms of number-of-lives
saved.

IV. ANYTIME-FAIR COVERAGE METHOD

We now propose an algorithm for anytime-fair coverage.
We call “anytime-fair” to the goal of obtaining a distribution
of group-coverage that is as fair as possible at any point in
time. For the rest of the paper we will assume that a “fair”
coverage is one where all social groups have been equally



Fig. 3. Disparate coverage of age groups in the limited-battery coverage planning problem. From left to right, top to bottom: Boustrophedon coverage
plan, evolutionary least-waiting-time coverage plan, cumulative coverage graph, range of coverage values across age groups (i.e. max-minus-min of the
coverage percentage of all groups).

covered (e.g. coverage percentage of the populations in all
age bins is the same). One issue with computing paths that
are fair exactly is that this may be infeasible or come at
a large efficiency cost, as recently shown for goal-directed
path planning [9]. Therefore a trade-off needs to be found
between the total population covered and coverage fairness.

We can formalize an anytime-fair method as one that
minimizes the sum of cumulative unfairness:

∑T
t=1 Um,π(t),

where Um,π(t) is an unfairness metric measured on map m
along path π(τ) over the interval τ = [1, t]. While optimizing
this objective is trivial in an evolutionary-optimization setting
such as that taken in previous goal-directed fair-planning
work [9], such algorithms are slow to converge in the
coverage-planning case due to high dimensionality of the
search space (see Section V). In this paper we instead
take a greedy approach to the problem that simultaneously
maximizes average coverage and minimizes the range of
coverage values across social groups, at all instants of time.

Algorithm 1: AnytimeFairCoverage
Input: map m, maximum trip length L
Output: coverage path π

1 π = [];
2 while Coverage(π) < 100% do
3 p = ExtractLastTripFromPath(π);
4 B = L− Length(p);
5 π = ExtendPathBestQuantile(m, π, B);
6 end

Basically, our method works by incrementally building
the coverage path by sampling new straight-line traveling
segments that maximize the mean minus standard deviation
(i.e. 0.159-quantile assuming a normal distribution) of the
group-coverage distribution. Algorithms 1 and 2 show the
pseudo-code for our method. At each iteration the method
greedily picks the next-best traveling segment out of a set
of samples, incrementally until full coverage is reached
(Algorithm 1). The greedy selection strategy is the core
component of the method (Algorithm 2). The algorithm
samples up to MAX SAMPLES points (lines 2-3). To each
sampled point x, the algorithm computes the straight-line
segment path p from the end of the current path π(T )

Algorithm 2: ExtendPathBestQuantile
Input: map m, path-so-far π, budget B, sensor

radius R, station s
Output: extended path πnew

1 T = Length(π) ; Q = [];
2 for i = 1, ..., MAX SAMPLES do
3 x = UniformSampleWithinBudget(m, B, π(T ),

s);
4 if not x then
5 p = BresenhamLineInterpolation(π(T ), s);
6 return πnew = [π, p]
7 end
8 p = BresenhamLineInterpolation(π(T ), x);
9 π′ = [π, p];

10 d = PercentagePeopleFoundInEachGroup(m, π′);
11 q = Mean(d) - Std(d);
12 Q(π′) = q;
13 end
14 return πnew = argmaxπ′Q(π′);

until x using Bresenham line interpolation, and appends
it to the current path π (lines 8-9). The algorithm then
computes the percentage of population that is found in each
social group by the new path π′, as well as a quantile q
of that distribution (lines 10-11). The algorithm will select
the segment that leads to a highest value for that quantile
(lines 12-14), since this simultaneously maximizes average
population coverage and minimizes the range of coverage
values across groups. One important point of the algorithm
is the sampling. Samples are taken uniformly within the
points of the map m that still allow enough distance for
the drone to return to the station. Therefore, the function
UniformSampleWithinBudget(m, B, π(T ), s) samples points
uniformly from m, and discards any points x for which the
inequality ||x−π(T )||+ ||s−x|| < B does not hold (i.e. the
distance to x plus the distance back to the station has to be
within the current budget). When such a point is not found,
the drone concludes the trip and returns to the station (lines
4-7).

In the next section we will see how this algorithm performs
in practice compared to evolutionary methods and sampling-



based baselines. We skip comparisons with the Boustrophe-
don method since, as shown in Section III, it performs worse
than the evolutionary method in all respects.

V. EVALUATION

We used the same setup as described in Section III
to evaluate our method. As before we compute coverage
paths for the city of Oxford, UK, from an hypothetical
launch/charge station in the central fire station of the city.
As baselines we use:
• “Evol”: the evolutionary algorithm proposed in [9],

adapted in the following way: 1) waypoints are scat-
tered across multiple trips with forced station-returns
at the end of each trip, 2) we compute the Pareto-
front of two objectives: total coverage and unfairness
(
∑T
t=1 Cm,π(t) and −

∑T
t=1 Um,π(t)). Therefore, this

baseline optimizes anytime-fairness directly. The opti-
mization is run until a plateau is reached (roughly 200
iterations);

• “Ours(nofair)”: an adapted version of our method where
segments are chosen in order to maximize total coverage
Cm,π(t) instead of the mean-minus-standard-deviation
of group-coverage—thus ignoring the fairness compo-
nent of the problem.

• “Ours(maxmin)”: an adapted version of our method
where segments are chosen in order to maximize the
coverage obtained by the least-covered group (i.e. re-
placing line 11 in Algorithm 2 by q = mind). This
is a typical approach to fairness in planning [27], [14]
and networking problems, sometimes called “Rawlsian”
fairness [9] due to its similarity to John Rawls’ theory
of justice [28].

Both our method and its variants use 100 maximum samples
(MAX SAMPLES) in all experiments.

Figures 4 and 5 show the resulting coverage and unfairness
graphs for the two cases of age and ethnicity fairness. Since
the objective of the coverage algorithm is different in each
case (minimize age- or ethnicity-unfairness), paths obtained
by the algorithms are different in each case. Comparing
the efficiency/speed of coverage (

∑T
t=1 Cm,π(t)) amounts to

comparing the area under the curve of the coverage graph,
while “anytime-fairness” (

∑T
t=1 Um,π(t)) is the area under

the curve of the “Group coverage range” graph.
The figure shows that our method achieves slightly higher

coverage efficiency and higher final coverage than the evolu-
tionary method: i.e. the evolutionary method fails to achieve
total coverage. This is because the evolutionary method
relies on chance (in the mating and mutation processes) to
eventually cover the whole map with randomly-generated
waypoints—making it hard to achieve full coverage. Our
method also achieves a near-identical unfairness curve to
“Evol”, but performs slightly better since it reaches exactly
0 unfairness at the end of the path due to achieving full cov-
erage. The fairness-unaware baseline (Ours-nofair) achieves
similar coverage performance to ours but very high group
bias: the range of group-coverage values peaks at 30% vs
10% for our method in the case of age-fairness (and 35%

vs 20% in the case of ethnicity). These gaps are reflected
in the per-group waiting time graph. The fairness-unaware
method starts by covering highly-dense areas (of mostly 18-
24 years old), thus decreasing the average waiting time for
these groups. It does this at the cost of slower coverage for
the elderly population (85+), while our method achieves a
more balanced coverage (lower for the student population
but higher for the elderly). The same happens in terms
of ethnicity: a fairness-blind approach penalizes minorities
such as Black and Arab, and privileges the dominant White
ethnicity—while our approach is more balanced. As dis-
cussed in Section III this fairness property could be crucial
for both increasing rescue effectiveness for the more at-
risk population, as well as avoiding previous criticism of
minority marginalization. Finally, and perhaps more impor-
tantly, our method obtains more balanced coverage of social-
groups without significant changes in terms of total coverage
efficiency. Particularly in the case of ethnicity-fairness the
coverage curve graphs are coincident. This means that there
is enough flexibility in the space of coverage plans to
allow for fair-but-efficient coverage without heavy trade-
offs. Using the popular maxmin strategy within our method
(“Ours(maxmin)”) leads to similar coverage and unfairness
curves, although at slightly lower performance: this is most
clearly visible in the average waiting time graphs, which
show 154 minutes for maxmin vs 149 minutes for our method
in the age-fairness case (Fig. 4) and 148 vs 144 minutes in
the ethnicity-fairness case (Fig. 5).

We also estimated average wait-times per age group.
Fig. 6 shows similar results to those seen in Fig. 4 and 5:
our method achieves more balanced waiting times that are
lower than “Ours(nofair)” for the older population and higher
for the younger population—while being on average lower
than “Evol”. Using a maxmin strategy within our method
(“Ours(maxmin)”) leads to higher waiting times than our
method for all social groups, as seen in the figure.

Besides achieving exact full coverage, our method has
one more advantage compared to the evolutionary method
of [9]: computation time. Table I shows the computation
times for both methods in the age-group case. Times are
averaged over 10 runs for our method, but over only two
runs for the Evol method due to its extremely large values
(it would take roughly 3 days to do 10 runs). The table
shows that our method is more than 200 times faster than
the evolutionary method, taking an average of 140 seconds
to solve (vs 32375s). It also shows that the computational
burden of promoting anytime-fairness is low, since it takes
only 56s more than the fairness-unaware baseline—which is
small within the timescale of total mission time (16h) and
average waiting time (150min).

VI. CONCLUSION

In this paper we investigated an important social dimen-
sion of coverage path planning—fairness. We first demon-
strated through realistic simulations of robot deployments
that there is a fairness dimension to coverage planning.
Fairness in this context is not related to who is seen or served



Fig. 4. Coverage, unfairness, and average waiting-time of our algorithm vs baselines. Age-group fairness optimization case. Waiting times are averaged
over all age groups.

Fig. 5. Coverage, unfairness, and average waiting-time of our algorithm vs baselines. Ethnicity-group fairness optimization case. Waiting times are
averaged over all ethnicity groups.

TABLE I
COVERAGE-PATH COMPUTATION TIME

Method Planning time (s)

Evol 32375 ± 281
Ours (nofair) 84 ± 9
Ours 140 ± 15

by a robot—since the whole physical space of interest will
eventually be covered. Instead, concerns of fairness could
come from the order or speed with which different social
groups are covered. We show that classical coverage algo-
rithms, especially those that try to minimize average waiting
times, will have biases related to the spatial segregation of
social groups. These biases could be of concern since they
may not be aligned with the interests of the application, e.g.
disaster response.

We explored the example of a search drone in the context
of disaster response. In this context, responses are expected
to not privilege any social group, or at least privilege only
those that are expected to be most at-risk. We showed that in
the example of the city of Oxford, UK, a traditional search
drone would privilege people in their early-20s, White, and
Chinese. Such bias would be against equality and risk-
prioritization-related principles of disaster response [2], [3],
[4]. They would also lead to reinforcing existing inequalities
and thus criticisms in disaster response, related to a lack of
help to those social groups that are already marginalized [5].

To better align coverage planning with its fairness di-

mension we proposed a fairness-aware planning algorithm
that is anytime-free. The concept refers to the objective of
optimizing fairness at all instances of time. We show that
our greedy sampling-based algorithm is 200 times faster
to compute than existing evolutionary algorithms—while
obtaining similarly fair and overall-faster coverage. We show
the method’s choice of optimizing the mean minus standard
deviation of per-group coverages is also more effective
than using a more traditional maxmin strategy within the
method. Importantly, our algorithm successfully exploits the
redundancy in coverage planning to achieve fairness at a low
cost to efficiency.

Interesting directions of further research include exten-
sions to multi-agent planning and station optimization. Addi-
tionally, we would like to investigate the performance of the
algorithm in extremely segregated cities, as well as the poten-
tial of using the planning method to characterize segregation.
Finally, we believe there is a need to close the responsible
innovation loop by obtaining feedback from stakeholders in
disaster response, for example through realistic user studies
and workshops, and using this feedback to iterate the design
of coverage planners.
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