
Towards providing explanations for robot motion planning

Martim Brandão, Gerard Canal, Senka Krivić, Daniele Magazzeni

Abstract— Recent research in AI ethics has put forth explain-
ability as an essential principle for AI algorithms. However, it
is still unclear how this is to be implemented in practice for
specific classes of algorithms—such as motion planners. In this
paper we unpack the concept of explanation in the context of
motion planning, introducing a new taxonomy of kinds and
purposes of explanations in this context. We focus not only on
explanations of failure (previously addressed in motion planning
literature) but also on contrastive explanations—which explain
why a trajectory A was returned by a planner, instead of a
different trajectory B expected by the user. We develop two
explainable motion planners, one based on optimization, the
other on sampling, which are capable of answering failure and
constrastive questions. We use simulation experiments and a
user study to motivate a technical and social research agenda.

I. INTRODUCTION

Motion planners are traditionally not self-explanatory about
their output. The result of running a motion planner is
typically either a trajectory or a failure notice, so users may
have problems understanding why a planner failed or why a
trajectory is different from what was expected. Typical motion
planner output can thus be hard to understand, debug, and
trust. Automatically-generated explanations for planner output
may offer a way to alleviate this issue: by increasing users’,
developers’, and stakeholders’ understanding of planners and
planning problems.

Notions of explanation in the existing motion planning
literature are narrow. For example, research has focused
on planner failure (“Why did you fail?”) [1], [2] but not
on answering trajectory-constrastive questions (“Why is the
output trajectory A, rather than B which I expected?”).
However, the latter form of contrastive question is most
relevant to humans, as evidenced by work on the psychology
of explanations [3], and it is also most important for human
empowerment [4] and calibrating trust. Work in motion
planning explanations has also focused on sampling-based
[1], [5] but not optimization or search methods; and focused
on environment design [1] (e.g. which furniture could be
moved to make a problem solvable). However, as we will
show, other important applications exist.

Motivated by these gaps, in this paper we explore the
question of what the concept of explanation could mean
and be useful for in the context of motion planning. We
claim that we can use explanations as a unified way to
algorithm design, mechanical design, environment design,
human-guided planning, and calibrating trust. Based on
a new taxonomy of the kinds of explanations related to
motion planners, we propose and evaluate two explainable
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Fig. 1: Users may have different questions regarding motion
planner output: “Why did you fail?”, “Why trajectory A
rather than B that I expected?”. The planner should provide
explanations based on various factors: Cost, constraiNts,
Algorithm parameters, robot Design, or Environment. These
then serve multiple purposes (bubbles).

motion planning methods. Finally, we elaborate on how
the study of explanation-computation should be informed
by research on related problems in motion planning [1],
[5], [6], optimization [7], visualization, communication [2],
psychology and philosophy of explanation [3], as well as
recent efforts for explainable machine learning [4] and
explainable AI planning [8]. Our contributions are:
• We introduce a new taxonomy of explanations in the

context of motion planning, and extend the concept to
constrastive explanations and clarifications (Section III);

• We propose methods for generating explanations (Sec-
tion IV) and evaluate them on a user study (Section V);

• We elaborate on a comprehensive research agenda for
explainable motion planning (Section VI).

We provide related work throughout the whole paper.

II. PRELIMINARIES

Motion planning is concerned with finding trajectories
of a system that respect certain start, goal, feasibility and
other constraints. In the context of this paper, a trajectory
ξ(t) : T → Q maps time t ∈ T to a robot configuration
q ∈ Q. A configuration typically includes a combination of
joint angles, link pose, torques, or contact forces. Depending
on the problem, time is an integer T = Z or real number
T = R. Trajectories lie in a space Ξ. A motion planning
problem requires obtaining a trajectory ξ(t) that starts at
a configuration qs ∈ Q and ends at a goal qg in a goal
set G ⊂ Q. It further requires ξ to minimize a cost C[ξ] :
Ξ → R+ and satisfy a set H of constraints Hi[ξ] ≤ 0
(note that equality constraints can be modeled with two



inequalities). We compactly write a motion planning problem
as minξ C[ξ] s.t. H. This definition of a motion planning
problem includes both 2/3D path planning, manipulation
planning and loco-manipulation planning.

We denote by a motion planner any algorithm that can
satisfy the above definitions. This includes optimal search-
based (e.g. A* [9]), optimal sampling-based (e.g. RRT* [10])
and optimization-based planners (e.g. Trajopt [11]).

III. TAXONOMY OF MOTION PLANNING EXPLANATIONS

A. Kinds of questions
Following the work of [3] we define explanations as

answers to why questions. In this paper we focus on two
kinds of questions: failure questions (“Why did you fail?”)
and trajectory-contrastive questions (“Why did you obtain
trajectory A rather than B?”).

1) Failure questions: Motion planners can fail for many
reasons, such as reaching planning time limit (e.g. anytime
search-based planners [12]), a poor initialization scheme in
optimization, a poor search heuristic, or because a certain set
of constraints could not be met. Answering such questions
could potentially reveal issues with the planning method itself,
clarify the part of the problem that is difficult to achieve,
or inform future mechanical robot re-designs. On the other
hand, motion planners could also fail when a problem has no
solution. In such situations, explaining failure might require
proving that there is no solution [13] and why.

2) Trajectory-contrastive questions: A trajectory obtained
by a planner might be unexpected to a user: it might look
unfeasible or sub-optimal, pass closer to an obstacle than
expected, etc. This question contrasts obtained trajectory A
with a trajectory B that was expected by the user. The question
may concern: i) the full trajectory ξA; ii) the trajectory of a
subset of the variables Q′ ⊂ Q; iii) the trajectory of a link’s
pose; or iv) the trajectory of an arbitrary function f [ξ] (e.g.
power consumption). It may also concern the above on a
portion of the trajectory T ′ ⊂ T (e.g. a waypoint).

Such questions may arise when users have the wrong
mental model of a problem, which leads them to believe that
the optimal plan should be different. In this case, answering
such questions could reveal gaps in knowledge (e.g. the robot
cannot fit through this passage) and trigger an update towards
a correct mental model. This is called model reconciliation
[14] in the literature of “Explainable AI Planning” (XAIP).

In addition to knowledge gaps, trajectory-contrastive ques-
tions may arise when motion planners are sub-optimal or
incomplete—and the user’s expected trajectory is better than
the planner’s trajectory. Due to the non-convexity and high-
dimensionality of many motion planning problems, there is
often a need to use heuristic-driven, local, or anytime planners,
and these could perform worse than humans in some situations.
Answers to trajectory-contrastive questions could thus reveal
issues with the planning algorithm or its parameters (e.g.
initialization scheme that leads to sub-optimal solutions), and
help developers debug and improve the algorithm.

B. Kinds of explanations
1) Cost-based explanations: One of the potential explana-

tions for a question “Why A and not B?” is that the cost of A

is lower than that of B. To be useful, such explanation might
need to be accompanied by a description or visualization
of the contributors to this cost difference. This kind of
explanation serves the main purpose of updating the user’s
mental model of the system, as well as raising trust in the plan.
In the case of multi-objective planning, it may be important
to explain why the trajectory provides an optimal trade-off
of the objectives [15].

Given two trajectories ξA and ξB , this explanation therefore
compares C[ξA] to C[ξB ]. It only makes sense to provide
these explanations when all constraints H are satisfied on
both trajectories.

2) Constraint-based explanations: Another type of expla-
nation relates to identifying the set of constraints that makes
a plan infeasible. For example, “the solution is plan A, not
B because B would collide with the environment at time t”.

More specifically, constraint-based explanations are sets
of constraints that, if removed or relaxed, lead to the
expected result. This involves searching over the power set
of constraint functions P(H) = {H1, ...,H|P(H)|} where P
represents the power set and each Hi is a subset of constraint
functions. For example, a problem with three constraints H =
{Htarget, Hcollision, Hdynamics} may become feasible both if the
collision constraint is removed H1 = {Htarget, Hdynamics}, or
the “target” constraint is removed H2 = {Hcollision, Hdynamics}.

3) Algorithm-parameter-based explanations: Due to the
non-convexity of many motion planning problems and the
use of anytime algorithms, the reason for a planner obtaining
plan A instead of B can be that it “did not find B” even
if B was lower-cost. Generally, this can happen if a certain
parameter of the algorithm did not have the appropriate value—
“appropriate” in the sense that the algorithm would find B if
the parameter had a different value. Example explanations of
this kind are: i) the algorithm was not run for long enough;
ii) the algorithm was initialized from a solution that is on
the basin of attraction of A not B; or iii) the algorithm
uses a non-admissible heuristic. This kind of explanation
can inform the development process since explanations can
suggest alternative parameter values (e.g. “I would have found
B if you had let me run for 5 more seconds”), and they may
help drive algorithm improvements (e.g. better initialization
schemes). Providing an actionable explanation of this type
requires a search in the space of algorithm parameters, either
until a plan is found (explanation of failure) or a new solution
ξA′ ≈ ξB is found (contrastive explanation).

4) Design-based explanations: Another kind of explana-
tion is related to the mechanical design of a robot. Plan B
which was expected by the user could be infeasible because
“the robot’s arm is not long enough”, “the robot’s body is too
heavy”, etc. Such kind of explanation is useful in updating the
user’s mental model of the robot’s capabilities and limitations.
However, such explanations also provide useful routes for
action at the level of design—they can inform subsequent
mechanical design improvements that decrease failure, or
better align with user’s expectations and preferences.

Design-based explanations require finding a set of design
parameter values p such that C[ξB ] < C[ξA] and constraints
are still satisfied. Similarly, in the case of motion planner



failure, it could be the case that for some p the problem
becomes feasible. Computing (the existence of) these values
requires searching over p, for example through gradient
descent, random search, or evolutionary algorithms [16].

5) Environment-based explanations: Failure or unexpected
trajectories could also result from characteristics of the
environment. For example, the reason for a plan being
unexpected could be “because area X is occupied”. Such kind
of explanation is tightly related to cost- and constraint-based
explanations, but due to its focus on possible environment
changes it can be useful in informing structural changes to
make in the environment itself. It can suggest design actions to
apply to the environment (e.g. a new door, moving furniture).

Similarly to design-based explanations, these explanations
rely on a parameterization of the environment (e.g. heightfield
[17], navigation mesh [18]) and searching over its parameters.

6) Clarifying explanations: Posing the question “why plan
A instead of B?” involves proposing an alternative plan, but
manually “drawing” feasible trajectories may be hard for
certain problems. To answer users’ questions, then, it might
be necessary to compute alternative trajectories ξC ≈ ξB that
are feasible. This would provide explanations such as “A was
obtained rather than B because B is not feasible. Did you
mean C? C is close to B and is lower cost than A. The reason
for this is...” To obtain such clarifications, we can search for
a trajectory around ξB that is feasible. In an optimization-
based motion planning method, this could involve solving
the original problem from multiple initializations around B,
and/or a cost to favor solutions close to ξB . In sampling-based
methods, a bias towards ξB could be used.

C. Purposes of explanations

The previous taxonomy of explanations implicitly suggests
multiple purposes for explanations in motion planning:

1) Developer-centered debugging and algorithm improve-
ment: One of the purposes of explanations is to help
developers find issues with the algorithms, such as why they
fail or behave sub-optimally in certain situations, or suggest
ways in which they could be improved. The “algorithm-
parameter-based explanation” is motivated by such a purpose.

2) Informing robot design and environment changes:
Explanations can inform the mechanical design of a system,
or drive structural changes to the environment itself. Such
explanations can thus serve as means to promote interdis-
ciplinary work between algorithm developers, mechanical
engineers, environment designers, and operators (Fig. 1).

3) User-centered understanding and responsibility: Expla-
nations can also be used to increase the knowledge a lay
user has over a system. This allows users to correctly decide
whether to use and trust a system or not, as well as to take
responsibility for the system’s actions [19].

4) Cooperative motion planning: Explanations can be used
as a tool to improve the performance of a collaborative planner.
For example, through explanations, a user may learn in which
contexts a motion planner usually fails, and can thus intervene
to propose plan initializations in those situations.

IV. EXPLAINABLE MOTION PLANNING METHODS

In this section we present two proof-of-concept explainable
motion planners. Our main purpose here is to show what
such methods could look like, and to obtain experimental
results that motivate our research agenda.

A. Explainable optimization-based planner
We designed a prototype explainable optimization-based

motion planner based on Trajopt [11], focusing on constraint
and algorithm-parameter-based (in particular initialization-
based) explanations. The problems are solved using Sequential
Quadratic Programming as implemented in Trajopt [11], and
trajectories parameterized by waypoints, i.e. T = {1, ..., T}.

In case of failure, the user specifies the kind of explanation
they are interested in: constraint, or algorithm-initialization.
The constraint-based method is as follows:

Algorithm 1 (constraint-based failure explanation):
1: for each Hi in P(H):
2: ξi = argminξ C[ξ] + 1Htarget∈Hi

αCtarget[ξ] s.t. Hi
3: k = argmini C[ξi]− β|Hi|+ γCtarget[ξi] s.t. Hcollision
4: return Message(“Not all constraints could be satisfied.
The problem would be feasible ifH\Hk were dropped and
the target was Ctarget[ξk] meters away from the original.”)

The method first obtains the power set P(H) of the constraints
(i.e. all combinations of active constraints) and solves all
combinations of problems, where each problem considers
only a subset Hi of constraints (lines 1-2). When removing
constraints over link-poses, represented by Htarget, we add
them as costs Ctarget = |Htarget| that promote smallest possible
distances to satisfaction (line 2). α is a constant parameter.
We assume the removal of collision constraints to be an
environment- and not constraint-based explanation. Therefore,
as an explanation we use the solution that respects all collision
constraints (Hcollision) and a good balance between low cost,
high-number of constraints Hi, and low distance to targets,
the latter weighted by positive constants β and γ (line 3).

Our method for algorithm-initialization-explanation is:

Algorithm 2 (initialization-based failure explanation):
1: for i = 1, ..., Nmax:
2: Pick random initialization and use it below
3: ξi = argminξ C[ξ] s.t. H
4: if ξi:
5: return Message(“The initialization was in the basin
of attraction of an infeasible local minimum. The planner
would succeed with initialization ξi.”)
6: else:
7: return Message(“Unfeasible or hard problem.”)

The method re-solves the problem from multiple uniformly-
sampled initializations until it finds a feasible solution or a
maximum amount of attempts (Nmax) is reached.

In case of trajectory-contrastive explanations, the user
provides a trajectory ξB that they expected, manually in a
user-interface by specifying waypoints in configuration space.
Waypoints are interpolated to obtain a trajectory of the same
size as the original trajectory, and then an explanation is
computed based on ξA and ξB . The explanation-computation



method is as in Algorithm 3. The method starts by checking
whether any of the constraints is not satisfied (line 2), in
which case we compute a closeby feasible trajectory (lines
3-4). Then, the method uses the cost of the alternative plan
ξC to return an appropriate explanation.

Algorithm 3 (trajectory-contrastive explanation):
1: ξC = ξB
2: if ∃i Hi(ξB) > 0:
3: Use ξB as an initialization below
4: ξC = argminξ C[ξ]+α

∑T
t=1 ||ξ(t)−ξB(t)||2 s.t. H

5: msg = “ξB is not feasible, do you mean ξC?”
6: if C[ξA] < C[ξC ]:
7: return Message(msg+“ξA has lower cost than ξC .”)
8: else:
9: return Message(msg+“To obtain ξC , the planner
would require an initialization closer to ξC .”)

B. Explainable sampling-based planner

We designed a prototype explainable sampling-based
motion planner, focusing on algorithm-parameter-based (in
particular time-based) explanations. Users provide alternative
(expected) trajectories in the same way as for the optimization-
based planner. We use an off-the-shelf anytime motion
planner: in particular, our experiments use “Batch Informed
Trees” (BIT*) [20]. To obtain explanations for why the
result was not the expected (was not ξB), we run the same
planner with a large time limit and a new stopping criterion
||ξ − ξB || ≤ dmin which halts path refinement when the
distance between ξB and the current solution ξ is small
enough (dmin is a constant parameter). If such a solution is
found, then the planner provides the explanation “The planner
obtained A because of a low computation time budget, it
would find B if the time budget was 30s”.

V. EXPERIMENTS

In this section we illustrate and evaluate the explanation
methods just described. The experiments consist of four
different types of explanation computed with the algorithms
described in Section IV. We use the Toyota HSR robot [21]
simulated in OpenRAVE [22] with the Open Dynamics Engine
(ODE) [23] to compute collision and kinematics, the Trajopt
library [11] to solve the trajectory optimization problems of
Algorithm 1-3, and OMPL [24] for the BIT* algorithm.

A. Experiment 1: clarification and cost explanations

We solved a motion planning task which involved reaching
and grasping a handle (i.e. a hand-pose constraint at t = T ),
using Trajopt. The cost was squared velocities C[ξ] =∑T−1
t=1 ||ξ(t+ 1)− ξ(t)||2. The planner found the trajectory

shown in Fig. 2a. We then assumed a hypothetical user asks
why the trajectory does not approach the target frontally.
To do this the user provides trajectory ξB by manually
setting two waypoints in configuration space, one in front
of the target, and one approximately grasping the target
(Fig. 2b). We selected the waypoints in order to lead to
a small collision with an object on the robot’s back. We
then used Algorithm 3 to compute a trajectory-contrastive

(a) ξA (b) ξB (c) ξC

Fig. 2: Question clarification. The planner provides a solution
ξA to grasp a handle (a). The user asks why the plan does
not use a trajectory with a frontal approach ξB (b). Since the
user-provided trajectory ξB is infeasible, the planner obtains
the closest feasible solution ξC and returns Explanation 1.

(a) Original problem (b) Relaxed problem

Fig. 3: Constraint-based explanation. Planner fails in (a)
because the target is unreachable. It finds a feasible solution
by relaxing the constraints (b), and provides Explanation 2.

explanation. Since the provided trajectory was infeasible, the
algorithm used clarification (i.e. found a closeby feasible
trajectory, shown in Fig. 2c), and provided Explanation 1.

Explanation 1: The user-provided trajectory ξB (Fig. 2b)
is infeasible, do you mean “why ξA (Fig. 2a) rather than
ξC (Fig. 2c)”? The reason is the cost of ξA is lower.

B. Experiment 2: constraint explanations

We solved a planning task to reach and grasp a water tap
using Trajopt (i.e. hand-pose constraint at t = T ). Compared
to the previous problem, we added a new constraint Hvel
which forces consecutive waypoint distances to be under a
threshold. The planner failed (Fig. 3a) and we ran Algorithm
1 to obtain a constraint-based explanation. The algorithm
found a solution that satisfies collision, ignores Hvel, and
relaxes the target constraint—and provided Explanation 2.

Explanation 2: The planner failed because constraints
Hvel, Htarget, Hcollision were not satisfied. The problem
would be feasible (Fig. 3b) if constraint Hvel was removed,
and the target was 0.15 meters away from the original.

C. Experiment 3: initialization explanations

We solved a motion planning task which involved moving
an arm in configuration-space from above to below a table
(i.e. configuration-space constraint at t = T ), using Trajopt.
Since Trajopt uses a linearly interpolated initialization, it
failed to find a feasible solution, as shown in Fig. 4a. We
then used Algorithm 2 to compute an initialization-based



(a) Failure (b) New initialization (c) Success

Fig. 4: Initialization-based explanation. An optimization-based
planner uses straight-line initialization and fails to find a
trajectory (a). It then finds initialization (b) which leads to a
feasible plan (c). It provides Explanation 3.

(a) Original plan ξA
(10sec budget)

(b) User’s expected
trajectory ξB

(c) New plan, using
30sec budget

Fig. 5: Time-budget-based explanation. A sampling-based
planner finds solution ξA (a). A user asks why the plan does
not go through the left of the table, by providing trajectory
ξB (b). The planner re-runs the search until a solution close
to ξB is found. It provides Explanation 4.

explanation. The algorithm found an alternative initialization
(Fig. 4b), which lead to a feasible plan (Fig. 4c).

Explanation 3: The planner failed because the initializa-
tion was in the basin of attraction of an infeasible local
minimum. It would succeed using another initialization
such as (Fig. 4b), obtaining solution (Fig. 4c).

D. Experiment 4: time-budget explanations

We solved a motion planning task which involved reaching
a shelf (configuration-space constraint at t = T ), using the
sampling-based planner BIT*. We set the time budget to 10s.
We show the solution found in Fig. 5a. We then simulated a
user asking why the trajectory does not go around the table
through the left. To do this we manually provided trajectory
ξB using waypoints (Fig. 5b). We then used the algorithm
described in Section IV-B to obtain a solution that is close to
the manually-provided trajectory. The algorithm found such
solution at around t = 30 seconds of refinement (Fig. 5c).

Explanation 4: The planner obtained ξA (Fig. 5a) because
of low computation time budget, it would find ξC ≈ ξB
(Fig. 5c) if the time budget was 30s.

E. User study

For each of the above explanations, we evaluated user
satisfaction and criticism in order to estimate the usefulness
and limitations of each explanation method. To do this we
conducted a user study through an online questionnaire. The
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Fig. 6: Users’ satisfaction with explanations provided by our
and traditional methods. 1 is very dissatisfied, 7 very satisfied.

users were 29 experienced roboticists with more than 1 year
of experience in motion planning (median 4 years). We first
asked the users about whether the planners they currently
use provide satisfactory reasons for failure when they fail.
Then, each user was presented with the problem descriptions
and explanations shown in Sections V-A-V-D above. For
each explanation, users evaluated their satisfaction with the
explanation (1-7 Likert scale from “very dissatisfied” to “very
satisfied”) and provided criticism in free text.

We show users’ satisfaction with the explanations in Fig. 6.
The median satisfaction was 6 for all our methods. On the
other hand, the median user was neutral (score 4) about
traditional planners’ ability to explain failure. The clarification
experiment had lower worst-case satisfaction due to a user
who found the language used would be hard to understand for
a lay user. Some users noted visualization of collisions would
help the explanation, while another commented that this kind
of explanation would be more suited to lay users, as it could
be trivial to experts. For the constraint-based explanation,
multiple users commented that the explanation could include
a visualization of the feasibility region. One user questioned
whether users should be shown a single explanation or all
possible explanations (i.e. all possible constraint removals that
lead to feasibility). Other users noted this was the most useful
explanation to them. In the initialization-based explanation,
three users commented that the method should have used
multi-starts by default. One user noted that this explanation
is more suitable to expert than lay users. For the time-
based explanation three users commented that time-based
explanations should also say why it takes longer to find path
B (e.g. narrow passage).

VI. DISCUSSION AND RESEARCH AGENDA

The purpose of this paper has been to explore the concept
of explanations for motion planning and outline a research
agenda in that direction. So far we have introduced a
taxonomy of explanations, the motivations for their use, and
new proof-of-concept explainable planners that provide both
failure and contrastive explanations. Expert motion planning
users were consistently satisfied with the explanations com-
puted by our methods, while they found traditional methods
to be relatively unable to provide satisfactory reasons for
failure. Based on the issues raised so far, we conclude with
a research agenda.



A. Metrics of explanation quality

In Experiment 2 we assumed a specific metric of expla-
nation quality (line 3 of Algorithm 1). Explanations that
optimize this metric might not be those that satisfy human
users the most, or those that are most effective at updating
humans’ mental model of the problem. Our study also
highlighted that different users might want to look at all
possible explanations, or provide their explanation preferences.
One important research direction is, therefore, identifying
good metrics of explanation quality. In the literature of
explainable machine learning these are usually modelled as
explanation length [25], or effectiveness at updating a user’s
mental model of the system [26], [8]. In motion planning, we
will need to conduct user studies to understand what factors
of explanations are most important to users.

B. Explanation methods

There is a need to identify and develop efficient ways to
compute explanations. For example:

Cost and constraint-based explanations: Tools for explain-
ing the influence of motion in the value of costs and in
constraint satisfaction. Methods of sensitivity analysis and
visualization of feasibility regions could be useful here (see
user study), as well as methods for obtaining motion abstrac-
tions [27] and homotopy classes [6]. An interaction with the
following literature is likely to be useful: culprit detection for
task and motion planning [28], minimal constraint removal for
motion planning [1], Irreducible Infeasible Set (IIS) methods
for optimization [7], among others. Additionally, motion-
planning-specialized methods to prove the inexistence of a
solution to a problem are important [13], potentially building
on analysis of the space of plans [29], [30], [6].

Heuristic-based explanations: Methods to automatically
construct admissible heuristics are necessary here. If a method
uses an inadmissible heuristic, then identifying whether that
is the reason for the undesired result requires solving the
problem with an admissible heuristic. Examples of methods
that could be used or extended include those for admissible
collision geometry based on sampling [27] or nesting [31].

Initialization-based explanations: In Experiment 3, we
used random multi-starts to find an alternative initialization
for the planner. Even though this is a common strategy in
optimization-based planning [32], it may take large amounts
of time to find a solution—and therefore an explanation. This
asks for research on methods for efficient global optimization
in motion planning, methods for visualization of local minima
[33], and for computation of homotopy classes [6].

Design-based explanations: The challenge with design-
based explanations is the high dimensionality of the space
and the difficulty in finding design parameterizations. We need
differentiable robot models [34], [35] so we can compute
the impact of a change in link length (or mass, or joint
positioning) on the cost and constraint functions. Additionally,
methods for exploring the high dimensional search space are
required, such as those used for design optimization [16].

Environment-based explanations: Differentiable environ-
ment models [36] are needed to provide environment-based
explanations for optimization-based planners. Even though

real-world robot motion planning typically relies on high-
resolution, noisy maps, recent work on compressing large
maps for fast planning [18] could be leveraged for efficiency.

C. Interfaces and communication

Asking “why plan A instead of B?” involves proposing
an alternative plan, which is difficult to do precisely due
to the difficulty in manually “drawing” trajectories. In our
experiments, the user asked questions by manually defining
waypoints in configuration space. This process would be
unsuitable for fast-pace robot missions, or systems targeted
at non-experts. Therefore, effective user interfaces will be
an essential part of explainable planners. The interface
design might also depend on the level of users’ expertise
and modality preferences (e.g. voice commands). In terms
of natural language explanations, future research should
try to identify what makes the communication of motion
planning explanations effective, and use such insights to
design interpretable [37], [2] communication methods.

D. Learning from the XAIP and XAI literature

Recent work on task planning explanations [8], [38] can
inform research on motion planning. For example, [39]
searches over different abstractions of a planning problem
to provide explanations according to a user’s expertise.
Methods for providing environment-based explanations of
planner failure have also been proposed in task planning
[40]. On the other hand, the “model reconciliation” paradigm
used by these methods may be hard to implement for
motion planning in practice, since it assumes knowledge
of the user’s mental model of a planning problem. In
motion planning, it may be difficult to know which robot
collision-geometries/constraints the user is not aware of, and
thus abstractions or probabilistic methods may have to be
employed. Recent work on computing state-space abstractions
for motion planning [27] could be useful here, as well as
work on the human psychology of planning [41].

One kind of explanation we have omitted so far is “global”
explanation, which is popular in machine learning [25]. This
involves computing a simplified algorithm which is easier
to interpret than the original. Inspiration could be drawn
from these methods to identify which variables and problem
abstractions account for most of the planned behavior. Another
relevant research problem is that of mapping out a diverse set
of situations (e.g. spatial configurations) that lead to failure—
thus providing “summaries” [42] of planner failure types.

E. Learning from social and cognitive science

Research on the social and cognitive science of explanations
will have to inform the design of motion planning explana-
tions. For example, studies have shown that complete explana-
tions are overwhelming to people’s capabilities (e.g. providing
all design-, environment-, constraint-, and initialization-
explanations simultaneously) [3]. Finally, insights regarding
user trust and reliance on algorithms [43] should be taken
into account when designing explainable motion planners.
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