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Abstract— Motion planning is a hard problem that can often
overwhelm both users and designers: due to the difficulty
in understanding the optimality of a solution, or reasons for
a planner to fail to find any solution. Inspired by recent
work in machine learning and task planning, in this paper
we are guided by a vision of developing motion planners
that can provide reasons for their output—thus potentially
contributing to better user interfaces, debugging tools, and
algorithm trustworthiness. Towards this end, we propose a
preliminary taxonomy and a set of important considerations for
the design of explainable motion planners, based on the analysis
of a comprehensive user study of motion planning experts. We
identify the kinds of things that need to be explained by motion
planners (“explanation objects”), types of explanation, and
several procedures required to arrive at explanations. We also
elaborate on a set of qualifications and design considerations
that should be taken into account when designing explainable
methods. These insights contribute to bringing the vision of
explainable motion planners closer to reality, and can serve as a
resource for researchers and developers interested in designing
such technology.

I. INTRODUCTION

There is a growing interest in research and development of
AI algorithms that are capable of generating explanations for
their output [1], [2], [3]. Explanations could play an essential
role in robot systems, as a way to improve predictability,
user-friendliness, debugging effectiveness and overall trust-
worthiness of robots.

While efforts have been made to characterize explanation in
general [4] and to develop explanation algorithms for task [5],
[3] and path planning [6], [7], explainable motion planning has
received much less attention. However, motion planners are
typically black boxes that either return a robot-trajectory (e.g.
a sequence of positions and joint angles to execute) or a failure
message without explanation. Lay users of mobile robots may
thus struggle to understand why a robot is failing to complete
its task, or why it is performing it in what seems to be an
inefficient way. Similarly, expert users and developers often
struggle to debug planning methods, as the source of failure or
trajectory properties relies on many factors—from algorithm
parameters and heuristics, to inherent problem properties such
as world geometry and robot kinematics. Explainable motion
planners—planners that provide algorithmically-generated
explanations for their output—can thus help improve user
and developer understanding of these methods’ outputs.

Motion planning algorithms are significantly different from
task-planning algorithms due to their use of continuous
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sampling and optimization methods, the exhaustive use
of non-linear cost and constraint functions, and various
specializations to the robotics domain. Therefore, it is unclear
if the kind of explanations studied in the task planning
literature [3], [8] would be useful in the motion planning
domain. More fundamentally, it is not even clear at the
current state of research what kind of questions an explainable
motion planner should be expected to answer, and what those
explanations would look like.

The main idea of this paper is to use insights from
experts in motion planning algorithms to obtain a preliminary
taxonomy of such questions, explanations, and also methods
for arriving at explanations. Due to their experience in the
use or development of such algorithms, experts have in-
depth knowledge of typical failures, undesired output and,
importantly, reasons for failure and trajectory output. Experts
may also have developed appropriate strategies for probing
and analyzing a planner in order to identify such reasons.
Therefore, we also look to elicit procedures used by experts
to arrive at explanations.

This paper reports on a comprehensive user study of motion
planning experts that elicits the objects of explanation (what
things need to be explained), types of explanation (kinds of
reasons provided), templates or prototypes of explanation
(specific examples), and the procedures used by experts to
arrive at explanations. The paper provides a preliminary
characterization of explanations in motion planning, in the
form of a taxonomy, a large set of examples, and relevant
themes that one should pay attention to when developing
explanation-generation algorithms in motion planning—thus
considerably extending previous work [9]. This paper also
paves the way for the development of explainable planners and
the further refinement of the taxonomy with complementary
(e.g. reflexive, lay-user-based) user studies.

The contributions of the paper are the following:
• We conduct and use a comprehensive user study of

motion-planning experts to propose a preliminary taxon-
omy of motion planning explanations: in terms of the
objects, types and procedures of explanation, as well as
concrete examples of explanations;

• We gather potential issues and design considerations that
should be addressed during the development of explain-
able motion planners, so as to produce interpretable and
useful explanations.

II. RELATED WORK

This paper’s goal of characterizing explanations in the
context of motion planning is related to recent efforts



throughout the AI community [1], [2], [3], [4]. Explainability
is seen as a way to provide users, designers, and other
stakeholders with tools to better understand a system’s
behavior, as well as to know what to do in order to obtain
desired behavior [10]. Explanations have been studied from
cognitive, philosophical and social perspectives [4], and they
have recently been modeled in technical terms for the purpose
of generating them automatically.

In the context of machine learning, several methods
have been proposed to improve the understanding of neural
networks [11] and general black-box classifiers [12]. In the
context of task planning, methods have been proposed to
automatically generate explanations for plans. For example,
“model reconciliation” methods [5] assume differences be-
tween a user’s mental model and a planner’s model of a
problem—and use these differences to generate explanations
that correct the user’s model. A community of eXplainable AI
Planning (XAIP) has emerged from these and other efforts
[8], and has led to attempts of relating similar concepts
of explicability, legibility, predictability, and others [13]. We
refer the interested reader to surveys of XAIP [3]. The concept
of explainability has also been recently applied to the problem
of single-agent [6], [14] and multi-agent path finding [7]. Few
of these methods translate directly to the motion planning
problem, however, since motion planning fundamentally
deals with continuous instead of discrete spaces; and it is
typically solved with different methods—e.g. optimization
and sampling based methods instead of search.

In terms of motion planning explanations, there is currently
limited work on the field. Rare exceptions include Hauser’s
[15] explanations for algorithm failure based on environment
changes (e.g. which furniture could be moved to make a
problem solvable), and Kwon et al.’s work [16] on planning
motion that conveys the reason for failure. However, such
works do not elaborate on what the range of possible kinds
of explanations is, and which approaches could exist to
generating such explanations. They also do not provide
insights into the considerations and difficulties that designers
should have in mind when designing algorithms to generate
explanations for motion planner output. It is these crucial
points that this paper will focus on. While in a previous
publication [9] we have used literature review and self-
reflection to characterize explanations for motion planning,
the output of this paper is more comprehensive due to the
use of various expert elicitation strategies. Compared to that
work, here we identify new types and objects of explanation,
new methods, and new design considerations not considered
previously. However, [9] includes a comprehensive overview
of relevant technical work and we refer the curious technically-
minded reader to that publication for such insights.

III. MOTION PLANNING BACKGROUND

This section is an introduction to the motion planning
problem and its algorithms, targeted at readers that are not
familiar with the topic. Robot motion planning algorithms [17]
are concerned with computing trajectories that take a robot
from a start to a goal configuration, where a “configuration”

typically refers to the position of the robot in the world, as
well as the angles (and/or positions, velocities, torques, etc.)
of its joints. These trajectories can be represented in different
ways: for example, a finite sequence of configurations, or the
parameters of a continuous curve. For these trajectories to be
feasible, they need satisfy a certain set of constraints, such
as avoiding collision with objects, respecting joint and motor
limits, dynamics constraints, etc. There is also a notion of
optimality associated with a trajectory—related for example
to smoothness or energy consumption—and it is modeled by
a “cost” function that needs to be minimized.

There are multiple approaches to solve motion planning
problems. One approach is “sampling-based” and uses random
sampling to build a tree of feasible configurations, until a
feasible trajectory to the goal is found [18]. Optimal versions
of sampling-based algorithms further refine these trees in
order to asymptotically arrive at an optimal trajectory [19].
Another approach to the problem is to discretize the space of
configurations, and then use graph-search algorithms to find
a trajectory from start to goal where configurations take only
discrete values [20]. Finally, optimization-based algorithms
model motion planning as a numerical optimization problem,
and use off-the-shelf optimization algorithms such as sequen-
tial quadratic programming methods to find locally-optimal
solutions to the problem [21], [22], [23].

Each approach has its advantages and disadvantages. Sam-
pling methods can be complete and optimal, thus being able
to find a globally optimal solution. They struggle with narrow
passages and can take potentially very high computation
times. Optimization methods are relatively fast when properly
initialized and can easily handle many constraints, however
they rely on a good initial “guess” of what the trajectory
should look like, and their output is only locally optimal [23],
[21]. Search methods can be very fast at low dimensions,
but need to rely heavily on heuristics at high dimensions,
and the discrete nature of configurations leads to a lack of
completeness and smoothness.

New machine learning-based methods are also beginning
to be developed, that typically work by either trying to copy
the behavior of classical motion planners in a training set of
problems [24], or by trial-and-error in reinforcement-learning-
based methods [25]. In this paper we focus on the classical
methods above, as these are more established, and are most
commonly used in production.

IV. USER STUDY METHODOLOGY

A. Overview

As we have described in Section I, the goal of conducting
the present user study was to characterize explanations of
motion planner output, and to identify potential issues and
important aspects of the development of explainable motion
planners. More specifically, we were interested in answering
the following research questions. RQ1: which events may
motion planning experts want an explanation for, and what
types of explanation for planner output are there? RQ2: which
procedures do experts use to arrive at an explanation for
motion planner output? RQ3: what issues and considerations



should developers have in mind when designing explainable
motion planners?

We used the research questions above to motivate the
organization of an online questionnaire targeted at motion
planning experts. We specifically chose the questionnaire
format for high turnout, but used a variety of elicitation
approaches—from general open-ended text questions to
example-driven probes—in order to allow in-depth analysis.

The questionnaire starts by asking participants’ occupation,
years of experience in motion planning, as well as the names
of (family of) methods participants were familiar with. We
excluded participants with less than 1 year of experience in
motion planning.

Our questionnaire used multiple elicitation approaches
targeted at answering RQ1. First it used open-ended questions
that asked participants for examples of typical reasons for
planner failure in their experience (i.e. failure to find a feasible
trajectory), as well as reasons for obtaining unexpected motion.
We specifically chose the word “reasons” in order to trigger
replies that are in the form of explanations. In a second
approach the questionnaire asked participants to provide
examples of explanations that would be useful if automatically
provided by a motion planner algorithm. The third approach
tried to better understand the objects of explanation, and
hence explicitly asked participants for the kinds of things that
would need explanation (other than failure and unexpected
motion). The last approach used realistic examples of planner
output in specific planning problems, as a probe to gather
specific explanations (more detail in Section IV-B).

To answer RQ2 we used direct open-ended questions that
asked participants to describe the kinds of procedures and
analyses they would do in order to identify the reasons for
motion planner failure or unexpected motion. Finally for
RQ3, we again used probes based on realistic examples of
automatically generated explanations for specific problems
(Section V-C), from which we gathered criticism; we also
used a feedback question on the overall “explainable motion
planner” enterprise; and a thematic analysis of comments
raised by participants throughout the questionnaire (Section V-
D). Importantly, some of the answers to sections of the
questionnaire related to RQ2 and RQ3 contained insights
into the characterization of explanations, and we therefore
used them to complete the analysis of RQ1.

B. Example-based probes

We used realistic examples of planner output to obtain
specific explanations the participants would use to justify that
output. All examples used a simulated model of the Toyota
HSR robot [26]. First we designed two motion planning
problems where two visually different paths would have
similar costs, and asked users to say why the planner would
return one path instead of the other. Fig. 1 shows the two
problems. In one of the problems (a-b), the robot needs to
avoid colliding with a table (around one side or the other)
and then reach for a shelf. The path (b) is more constrained
(though shorter) than (a). In the second problem (c-d), the
robot needs to reach for a washing machine handle, either

(a) (b)

(c) (d)

Fig. 1: Two motion planning problems: reaching for a shelf
(a-b), and reaching for a washing machine handle (c-d). In
each problem, the experts were asked to provide reasons why
the planner would return path A (a,c) instead of path B (b,d).

(a) (b)

Fig. 2: Two extra problems (besides those in Fig. 1) for which
example explanations were provided to experts for feedback.
(a): failure due to incompatible constraints (reaching, velocity
and collision). (b): failure due to an initialization that is
nearby an infeasible local minimum.

with a frontal path (d) or smoother curved path (c). The
questionnaire described the motion planning problems (“a
robot avoiding a table and reaching for a shelf”, “a robot
reaching for a washing machine handle on the left”) and
asked participants to “Assume a motion planner returns path
A, but B is the actual optimal path. Why do you think the
planner could return A instead of B?”.

For eliciting criticism of particular explanations, we used
simple methods to generate explanations for four motion
planning problems. We generated explanations for both the
problems in Fig. 1 (of the unexpected-motion type “why did



the planner obtain path A rather than B?”), as well as two
extra problems shown in Fig. 2 (of the failure type “why
did the planner fail to obtain a solution?”). The methods
used to generate the explanations were counterfactual: they
computed a modification of the original problem or the
planner’s parameters that would lead to the desired outcome
(i.e. expected motion B and planner success respectively). We
describe each explanation method together with the respective
experts’ criticism in Section V-C.

C. Data collection and participants

We used a snowballing strategy for gathering participants:
we first sent the questionnaire personally to motion planning
experts in the research network of the authors, who in turn
disseminated it to their own networks. We stopped recruiting
more participants once we reached saturation, i.e. the amount
of new insights generated per participant became substantially
low.

Out of 31 subjects that filled in the questionnaire, a total of
29 subjects had over 1-year experience and were thus allowed
to participate fully (i.e. the other 2 subjects only filled in
the initial background section). Fig. 3 shows the participants’
occupation, years of experience in motion planning, and
familiarity with four families of methods (sampling-based,
optimal sampling-based, search-based, optimization-based).
The figure shows that most participants were PhD, post-doc
and faculty, while two were BSc and one worked in industry.
The median number of years of experience was 4. Method
expertise was balanced across the four families.

The families of methods participants could choose from
were predefined, but we also allowed them to provide specific
names of methods or software in addition to this question.
Participants were familiar with varied software such as
“MoveIt”, “OpenRAVE”, “SBPL”, “STOMP”, “EXOTica”,
“Humanoid Path Planner”, among others.

V. USER STUDY RESULTS

A. Experts’ explanations for planner output (RQ1)

In this section we identify the objects and types of
explanation that experts provided for motion planner output
(RQ1). Table I (“explanation templates” column) shows a
list of all examples of explanations that we collected from
participants throughout the whole questionnaire.

We categorized the explanation templates by open coding
of the templates and surrounding text provided by participants,
thus arriving at four “types” of explanations: method-centered
explanations, problem-centered explanations, visualization-
centered explanations, and unknown reasons (i.e. when no
explanation can be found). Table I therefore groups the
templates by type of explanation (first column).

Most method-centered explanation examples were provided
by participants in the first elicitation approach to RQ1 (“what
are the typical reasons for planner-failure / unexpected-motion
that you encounter?”). The second elicitation approach (“what
kind of planner-generated explanations would be useful?”), on
the other hand, lead participants to provide many explanations
that were problem-centered—referring to “how close” an

object is, whether the environment is “cluttered”, etc. Most
visualization-centered explanations were also provided within
this elicitation approach. Interestingly, this difference in
responses once the focus is on the usefulness of explanations
(i.e. difference between first and second elicitation responses),
seems to indicate that problem-centeredness, interpretable ab-
stractions (e.g. of “proximity” or “clutter”) and visualizations
are key factors to make explanations useful. We discuss these
ideas further in Sections V-C and V-D.

The third elicitation approach to RQ1 asked participants
for other type of motion planner behavior that they would like
to have explanations for (other than failure and unexpected
motion which had already been referred before this point).
Here participants provided two extra objects of explanation:
1) computation time (i.e. why it took so long for the
planner to obtain this solution); and 2) obtained cost or
task-performance (i.e. why the planner did not obtain lower
cost, for example because the arm was too heavy, or because
a planner hyper-parameter was not well tuned). Table II
summarizes the objects of explanations we have identified
from the questionnaire. The last object in the table (constraint
conflict) was actually inferred from RQ3-related questions.
There, multiple users suggested that explanations should not
only say failure happened because of a conflict between
certain constraints, but also specify why those constraints
conflicted with each other.

In the last elicitation approach to RQ1, where we used
realistic visually-grounded explanation probes (previous de-
scribed in Section IV-B), participants provided a considerable
variety of explanations. Particularly, the following had not
been brought up in the previous elicitation approaches: “[the
planner returned trajectory A rather than B] because of
the algorithm’s initialization (in optimization algorithms)”,
“because of the chosen cost weights”, “because of object
x which cannot be seen from this perspective”, “because
of chance”, “path A is lower-cost/safer”, “B is out of the
workspace”, “the algorithm did not obtain enough samples”
(in sampling-based methods). Interestingly, the diversity and
novelty of explanations obtained in this elicitation approach
suggests that explanations can become very specific to
particular problems and applications. This observation has
important consequences for the design of explainable motion
planners—namely that they might require application-specific
user-studies in the early stages of design, so as to better
identify the kinds of explanations that will be triggered within
the context at hand.

Compared to the taxonomy of [9], our elicitation strate-
gies thus identified new categories of explanation objects
(“Computation time”, “Cost”, and “Constraint conflict”), and
explanation templates (all templates in Table I except “occu-
pied space”, “time budget”, “object closeness”, “conflicting
constraints”) that had not been considered previously.

B. Experts’ methods for obtaining explanations (RQ2)

Experts that participated in the questionnaire provided
multiple examples of procedures they would use to arrive
at justifications for motion planner output. We categorized



University
faculty

5

Postdoc

10

PhD
student

11

BSc
student

2
Industry1

1 2 3 4 5 6+
Number of years of experience

0

2

4

6

8

10

N
um

b
er

 o
f 

p
ar

ti
ci

p
an

ts

Sampling-
based

Optimal
sampling-

based

Search-
based

Optimization-
based

Motion planning algorithms

0

5

10

15

20

N
um

b
er

 o
f 

ex
p

er
ts

Fig. 3: Participants’ occupation, years of experience, and algorithm expertise.

TABLE I: Explanation types, templates, and procedures

Explanation type Explanation template Explanation-generation procedure

Method- Because of the use of approximate collision checking Analysis of motion
centered Because of the use of gradient methods on an unsmooth problem Analysis of motion
explanation Because the objective promotes solutions of following types Compute families of solutions (e.g. local minima clusters)

Because of the computation time budget used Re-solving with method changes
Because hyper-parameter x is not y Re-solving with method changes
Because of the algorithm’s initialization scheme Re-solving with method changes
Because the methods got stuck at an infeasible local minimum Analysis of motion
Because cost weights are x not y Re-solving with method changes
Because of chance Re-solving
Because the algorithm did not obtain enough samples Re-solving with method changes
Because of incorrect pruning of the search tree in state x Analysis of search tree
Because of the choice of planner Re-solving with other method
Because of a software bug Code analysis

Problem- Because of conflicting constraints (x conflicts with y) Re-solving with problem changes
centered Because constraint x cannot be satisfied even by itself Re-solving with problem changes
explanation Because of occupied space in region x (obstacle y) Analysis of motion / problem

Because of free space in region x Analysis of motion / problem
Because the robot dynamics has effect x Analysis of motion / problem
Because of the volume of robot part x Re-solving with problem changes
Because the problem has no solution Re-solving with problem changes; unfeasibility certification
Because object x is not close enough Re-solving with problem changes
Because the start/waypoint/goal cannot be satisfied Analysis of problem; Re-solving with problem changes
Because the environment is cluttered Analysis of problem
Because of a singularity in region x Analysis of motion / problem
Because path A is lower-cost Analysis of motion
Because path A is safer/more-efficient Analysis of motion
Because B is out of the workspace Analysis of motion
Because path B crosses unmapped space Analysis of motion
Because of a bug-trap in region x Analysis of function
Because of problem difficulty Analysis of search tree / problem

Visualization- Visualize explored actions and their feasibility regions Analysis of motion / search tree
centered Visualize where expected paths become infeasible Analysis of motion
explanation Visualize which part/link leads to not finding a plan and where Re-solving with problem changes

Visualize map/plan areas that are problematic/bottlenecks Analysis of motion / search tree / problem
Visualize with colours why the robot moved the way it did Analysis of motion; Re-solving with problem changes
Visualize families of good solutions coloured by performance Compute families of solutions (e.g. local minima clusters)

Unknown I dont know the reasons for x

these explanation-generation procedures into “analysis of
motion” (e.g. analyzing the presence of collisions or the
costs along a computed trajectory), “analysis of the problem”
(e.g. analyzing the incompatibility between constraints), “re-
solving” (i.e. simply solving a problem multiple times to see
if the output is related to random factors), “re-solving with
problem changes” (e.g. solving a problem with a relaxed or
removed constraint), “re-solving with method changes” (e.g.
solving the same problem with a different computation time
budget, hyper-parameter value, initialization scheme, etc.),

“analysis of the search tree”, “code analysis” (e.g. to identify
bugs), and “computing families of solutions”. We added
these types of procedures to Table I (column “explanation-
generation procedure”) according to the types of explanation
these procedures could potentially be applied to.

Participants offered multiple qualifications of such pro-
cedures. For example for “analysis of the problem”, one
participant suggested it could involve identifying “bug-
traps” (i.e. regions of the space that are hard to get out
of once the planner begins exploring them), and another



TABLE II: Explanation objects (explanations of what)

Explanation object

Failure (why planner failed)
Unexpected motion (why motion A not B)
Computation time (why planner took longer than x)
Cost (why cost isn’t lower)
Constraint conflict (why constraint x conflicts with y)

mentioned analysis of convergence rates for characterizing
problem difficulty (for optimization-based algorithms). Other
participants also suggested empirical methods of “[breaking]
the problem into sub-problems that isolate different aspects”,
or coming up with simpler problems that re-create the issue
of concern. Such procedures could then provide explanations
of the type “this problem is not solvable because sub-problem
x is not solvable” or “for the same reason this simple
problem is not feasible”. The suggestion of identifying and
visualizing feasibility regions was also brought up by multiple
participants.

For “re-solving” procedures, participants suggested they
would try to solve slightly different problems to identify the
reasons for planner output. For example, changing problem
start/goal/waypoints/cost-weights until the planner output
is as desired—in order to say that the output was not as
desired because of the start/goal/waypoint/cost-weights in the
problem. One participant also suggested it would be useful
to investigate whether the problem is feasible with a single
enforced constraint (e.g. only kinematics). For explanations
of failure, re-solving with relaxed or removed constraints was
a strategy brought up by a large proportion of the experts.

For procedures that “re-solve with method changes”,
participants provided multiple examples, such as solving the
same problem with a different planner, initialization scheme,
or hyper-parameters such as maximum number of samples
(in sampling-based planners).

The methods provided for explanation of unexpected
motion were similar to those of failure, except the former
elicited extra procedures related to changing cost-weights,
choice of planner, and visualization of solutions.

C. Issues and considerations in the design of explainable
motion planners (RQ3 part 1)

In order to answer RQ3 (what kind of issues and consid-
erations should developers have in mind when developing
explainable motion planners?), we used four particular exam-
ples of explanations in realistic motion planning problems.
We will call these “Problems” 1-4.

In Problem 1, shown in Fig. 1 (a-b), we assumed the use
of a sampling-based planner. To the question “why did the
planner obtain path (a) rather than (b)?”, we automatically
generated the following explanation: “The planner obtained
(a) because of a low computation time budget. It would have
found (b) if the time budget had been larger (>30s)”. We
obtained this explanation by re-running the anytime sampling-
based planner with a longer time-budget and stopping once a
solution close to (b) was found [9]. The participants reacted

to the explanation with varied criticism. Three participants
commented that the explanation should specify why one path
takes longer to discover (e.g. one constraint is hard to meet),
since computation time is more a symptom than a cause of
not finding path (b). One participant expressed concerns about
whether and how we can trust the explanation to be valid. And
one participant suggested the planner could provide examples
of similar situations. We infer that such suggestions could
help users better understand and predict patterns that lead
to unexpected (sub-optimal) motion, from which users could
extrapolate reasons for the longer computation time—or ideas
for improving the planning algorithm.

For Problem 2, shown in Fig. 1 (c-d), we provided the
explanation “[the planner obtained path (c) rather than (d)]
because the cost of (c) is lower than the cost of (d)”. We
generated this explanation by computing the difference in
cost of the two motions. Participants commented that the
planner should also provide information on the cost trade-
offs to improve the explanation (e.g. that turning the base
is cheaper than moving it). One participant also found the
explanation would be useful to a new user but trivial to an
expert.

For Problem 3 (Fig. 2 (a)) we assumed the use of an
optimization-based solver (TrajOpt [21]). To answer the
question “why did the planner fail to obtain a solution?” we re-
solved the problem multiple times, each time enforcing only
one of the possible subsets of constraints (“re-solving with
problem changes” procedure). Then we selected the problem
for which collision constraints were respected, a low number
of constraints was removed, and a low distance to target
pose achieved [9]. By comparing the active constraints of the
feasible and original problem we generated the explanation:

“I failed because constraints on movement velocity, target
location, and collision could not be simultaneously satisfied.
The problem would be feasible if the constraint on velocity
was removed, and the target was 0.15 meters away from
the original”. Three participants commented the explanation
should specify why one constraint conflicts with the other (as
discussed in Section V-A). Another participant suggested the
explanation should use some kind of abstraction about the
maximum reaching length of the arm (e.g. “the target exceeds
arm’s maximum reach by y meters”). Two participants also
expressed concern regarding the degree of information the
explanation should reveal. For example, since there are many
unsolvable constraint sets, should the explanation only reveal
one set (as in the explanation we provide), a subset, or all (i.e.
all ways to make the problem feasible). Indeed, how to choose
meaningful subsets of explanations without overwhelming
the user could be a difficult problem in itself.

For Problem 4 (Fig. 2 (b)) we again assumed the use of
an optimization-based planner. To answer the question “why
did the planner fail to obtain a solution?” we re-solved the
problem from multiple randomly generated initializations
until the planner succeeded. We generated the following
explanation: “I failed because my algorithm relies on an
initial guess of the solution (linear interpolation between start
and goal), and I could not find a feasible solution locally



around the initial guess. I would have succeeded if I had used
another initialization strategy. For example, I could get the
following solution using multiple random initializations”. The
majority of the criticism focused on the fact that such kind
of explanation should not be necessary, as such functionality
(to solve the problem with a different initialization) could
be used as part of the algorithm and avoid failure. However,
such explanation could make sense in contexts of post-hoc
explanation (e.g. accident investigation or debugging). It
would also make sense to use such kind of explanation as a
way to determine if hard problems are solvable given enough
computation time, or if they are seemingly unsolvable (e.g.
“we could not find any initialization that would make this
problem feasible, even after X tries”). Another participant
commented the explanation seemed more suited to expert
than new users.

Finally, we asked participants to reflect on and criticize
the general enterprise of building explainable planners.
Participants were overall receptive to a research direction
towards explainable motion planning, focusing on its ability
to “accelerate the debug process” and they were enthusiastic
about embedding “debugging capability” to the planner
itself. The focus on debugging as the main application of
interest is a clear manifestation of the background of the
participants (i.e. experts in the use and development of
motion planners), though some participants also indicated
they would imagine lay users using the technology. A few
participants commented that many of these ideas would be
challenging to achieve in practice. Namely they manifested
concern that they would require large amounts of computation,
though they suggested this could be alleviated by “drawing on
planning experience and plan representations that have already
been computed/learned”. One participant also suggested that
experience accumulated by the planner through explanation
computation could be used to improve the planner over time
(i.e. improve its hyper-parameters, initialization scheme, etc.).
Particularly, the strategies used to identify reasons for failure
could then be exploited to “try different approaches or know
when to give up.”

D. The themes of design consideration for explainable motion
planners (RQ3 part 2)

Next, we qualitatively analyze the recurrent themes brought
up by experts throughout the questionnaire, which can be
used together with the insights above to qualify important
aspects of explainable-planner development.

Visualization theme. Participants considered visualiza-
tions to be a good way of explaining failure and unexpected
trajectories, with ideas like highlighting problematic areas
or feasibility regions, or displaying occupancy and robot
constraints. Some participants suggested it is important to
find ways to “visualize the cost of the expected solution”, for
example by “[highlighting] in different colors why the robot
had to move like it did (because of its volume, occupancies,
etc.)”. The focus of visualization was on making explanations
interpretable and intuitive, e.g. by “showing where intuitively
expected paths collide/invalidate constraints”, which could

be important for making sense of very abstract or complex
constraints, as well as “small collisions [that] can be difficult
for humans to spot”.

Abstraction theme. Automatically finding problem ab-
stractions was a functionality that was implicitly present in
many of the explanations provided by participants. Expla-
nations referring to “cluttered” environments, or an object
not being “close enough” implicitly require methods for
automatically recognizing such situations. Some participants
suggested an explanation could rely on comparisons to a
simpler problem, which again would rely on methods to
identify the important features of a problem and produce new
problems with similar features. The production of natural
language descriptions of the environment and of objective
and constraint-function behavior is also an important area of
research related to this theme.

Problem hardness theme. Multiple participants com-
mented on the need to quantify problem difficulty as a
cause for some events—such as failure to find motion
within a computation time budget. Participants suggested
the need to use convergence rate statistics (optimization-
based planners) and sample-validity statistics (sampling-based
planners) as way to “measure the difficulty in solving a
particular problem”.

Deeper explanation theme. Another recurrent theme was
the need to generate explanations that go deep in the causal
process of failure, unexpected motion, constraint-conflict,
etc. When referring to explanations of failure related to
computation time budgets, participants expressed their belief
that explanations should include reasons “why it took so long
to find a solution”—rather than stating only that the method
needed more time. One participant commented that “runtime
is usually a symptom, not a cause of the problem”, thus show-
ing an interest of experts in deep causal explanations. One
participant suggested “the explanation could say why it needs
more time” by specifying which “of the constraints is hard
to meet” (see problem hardness theme). Similarly regarding
constraint conflicts, experts stressed explanations should say
why a constraint conflicts with another, potentially through
the help of visualization or abstraction. One participant even
suggested explanations could help experts better understand
the inner workings of motion planners, for example by helping
“understand more about how the solver balances priorities of
constraint satisfaction and cost minimization, and how this
can cause an infeasible initial guess to converge to a much
more stylistically different solution than expected”.

Actionability theme. When asked for useful explanations
and desired functionality of explainable planners, 7 of
the 29 experts suggested that explanations should provide
information that is actionable—they should provide hints
about the changes that would have to take place in order to
obtain the desired planner output. Participants said it would
be “even better to suggest any hyper parameter changes [that]
will result in better local minima”, to provide “suggestions
for improvement”, or “examples on what to change to
(possibly) make it work” (i.e. to make the planner not
fail). Participants commented that such explanations could



even suggest “robot model/morphology/actuation capability
changes that can improve the performance of completing a
task” (i.e. when the explanation is for why the cost is not
lower). And that such functionality would be an “interesting
technique when combining with modularized robot design”.
This focus on actionability is aligned with similar trends in
machine learning explainability, that have started arguing for
counterfactual explanations that can empower users, e.g. to
know what they need to do to get a loan [10]. Some of the
actionable explanations suggested by our participants also
relied on abstraction, e.g. “need the object 2 cm closer/to the
left to be able to grasp it”.

VI. CONCLUSION

In this paper we have described and analyzed a new user
study designed to unpack the concept of explanations in
motion planning. We used multiple elicitation approaches
to construct a preliminary taxonomy of explanation objects
(Table II), types, and procedures (Table I), along with specific
examples and qualifications of each (Sections V-B-V-D).
The data was based on expert input, thus providing deep
insights into the challenges and considerations that should
be paid attention to when venturing into the development of
explainable motion planners in practice.

The motion-planning experts who participated in the survey
agreed that explainability is an important research direction
in motion planning, and were especially optimistic about
its capability to improve the debugging process of motion
planners. Important take-home messages from the paper
include the observation that for explanations to be useful they
will often have to be problem- and visualization-centered,
and make use of intuitive abstractions. They will have to be
actionable: provide hints into the required changes to make
to the problem/planner in order to obtain the desired planner
output. And they will have to provide deep explanations,
in the sense that they capture causes of events at multiple
levels in the causal chain (e.g. to say that a planner failed
because it was not given enough time, and that it took
too much time because a specific sub-problem is difficult
to solve). Another observation was that concrete example-
driven elicitation helps identify a large number of examples
of specific explanations of planner output that were not
predicted through other elicitation methods. This observation
suggests that user-studies might have to be conducted with
target audiences of explainable planners, in order to identify
potential context-specific explanation templates.

The preliminary taxonomy and design considerations
proposed in this paper can be used as a resource in the
design of explainable motion planners. However, they can
also be used as a basis for further research on the topic.
In the future, the taxonomy should be extended based on
user studies with lay users and over multiple applications of
robot motion planning. Other research directions include more
realistic (e.g. interactive) user study setups, and a reflexive
analysis of the taxonomy.
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