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Abstract—Bias has been shown to be a pervasive problem in
machine learning, with severe and unanticipated consequences,
for example in the form of algorithm performance disparities
across social groups. In this paper, we investigate and characterise
how similar issues may arise in Reinforcement Learning (RL)
for Human–Robot Interaction (HRI), with the intent of averting
the same ramifications. Using an assistive robotics simulation
as a case study, we show that RL for HRI can perform
differently across models with different waist circumferences.
We show this behaviour can arise due to representation bias—
unbalanced exposure during training—but also due to inherent
task properties that may make assistance difficult depending
on physical characteristics. The findings underscore the need to
address bias in RL for HRI. We conclude with a discussion of
potential practical solutions, their consequences and limitations,
and avenues for future research.

Index Terms—reinforcement learning, fairness, ethics

I. INTRODUCTION

Machine Learning algorithms have recently been shown
to reproduce harmful bias, whether through their decisions
[10], [17] or through performance disparities [2], [4]—where
performance disparities are differences in performance levels,
such as accuracy, on different groups of people. Reinforcement
Learning (RL) is a popular learning-based approach to robot
control in Human–Robot Interaction (HRI) [1], [6], [11],
but issues of bias in this context are not yet understood. If
similar issues of performance disparities were to arise in HRI,
they could lead to strong safety and technological-acceptance
issues. For example, if an assistive robot could only perform
assistive tasks to an acceptable or safe level on people that are
similar to those the robot was trained on, it could lead certain
social groups to be unable to use assistive robots, or to be
at high risk of an accident when interacting with them. While
issues of bias in supervised learning have often been identified
and addressed only at a late stage in the development process,
our goal is to avoid this pitfall and anticipate issues of bias in
RL early on, especially before deployment in HRI production.

We use an assistive robotics case study to characterise the
problem of performance disparities in RL for HRI, and to dis-
cuss potential bias mitigation approaches and their limitations.

Our contributions are as follows: 1) We experimentally
demonstrate that RL for HRI can perform worse on minority
groups; and that uniform exposure does not necessarily lead
to unbiased performance. 2) We discuss the social and techni-
cal implications of performance disparities in HRI, potential

mitigation strategies, and the limitations of those strategies in
practice.

II. RELATED WORK

As machine learning techniques have grown in use and
impact, so has the scrutiny of the ethical implications of their
decisions [12], such as biased and discriminatory outputs [10],
[17]. Examples of these biases have been highlighted by many
AI ethics researchers, for instance in racially biased gender
recognition [4], gender biased hiring algorithms [17], and age
bias in pedestrian detection [2] to name a few.

Machine learning bias can be thought of in different ways.
For example, Buolamwini and Gebru [4] focus on performance
differences across different groups, and Hundt et al. [10] focus
on the propagation of socially undesirable stereotypes through
robot actions. Researchers have shown that bias in the output
of machine learning models can be traced to problems at
the various stages of model development [21]. For example,
they show it can arise due to historical bias (when our data
reflects biased structures in the real world), representation
bias (when certain groups are underrepresented in a dataset),
measurement bias (when measured data is a proxy for ideal
data, and has correlations or deficiencies related to social
groups), amongst others [21]. We will consider bias in terms
of different performance levels for different groups, where
performance is measured, as in RL, in reward.

From the growing body of work in AI ethics, efforts have
been made to also apply these concepts to embodied systems,
such as robotics and autonomous vehicles. Hundt et al. [10]
show how robots using CLIP [19] to make image-based
decisions can propagate racist stereotypes. Also in robotics and
computer vision, research has shown that pedestrian detection
algorithms miss children in images twice as often as they
miss adults [2], which is related to a lack of presence of
children in training sets (i.e. representation bias). Bias has
also been shown to creep into the performance of mobile
robot planners when they take into account spatial statistics,
such as population density for disaster response [3]. In social
robotics, gender bias can occur through decisions of when to
back-channel in conversation [18] due to imbalanced datasets
and reductive rules for deciding robot cues/actions. Differently
from the work described above, we focus on investigating the
issue of bias in RL when applied to HRI systems.

Robots are being developed to solve tasks in social domains,
such as healthcare [7], [14], [16], and RL is a popular approach



to robot control in such domains [1], [6], [11]. Presently, work
has begun in characterising some of the potential issues of bias
in RL. Whittlestone et al. [23] and Gajane et al. [8] delve into
the societal implications and fairness concerns surrounding
reinforcement learning (RL). Whittlestone et al. emphasise
challenges in deep RL, including ethics, governance, lack of
human oversight, safety, reliability, and the potential unin-
tended consequences of reward function design. Gajane et
al. survey fairness in RL, highlighting issues such as the
interpretability and explainability of RL policies and a lack
of focus on societal fairness. Both works underscore the need
for addressing these challenges to ensure fair and transparent
RL algorithms, although they do not investigate bias in the
form of performance disparities.

III. BACKGROUND

We briefly introduce the notation we are going to use for
policies and what they maximise in RL, and the simulation
environment on which our experiments are based.

A. Reinforcement Learning
We assume the standard reinforcement learning formula-

tion as an episodic Markov Decision Process (MDP) M =
⟨S,A, T,R, γ⟩, where S is the set of states, A is the set
of actions, T is the transition function, R is the immediate
reward, and 0 ≤ γ ≤ 1 is the discount factor. The agent acts
according to a policy π(a | s), where a ∈ A, s ∈ S, with the
aim of maximising its return, that is, the cumulative expected
reward Gt from the initial state at time t = 0 over a horizon H:
G0 = Eπ

[∑H
t=0 γ

tRt+1

]
. Episodes terminate after H actions

and the environment is reset to an initial state.

B. Simulation Environment
To study performance disparities, we use an environment

where robots collaborate with people with different character-
istics. We modified Assistive Gym [6], which is a publicly
available Reinforcement Learning environment for training
robots in daily assistive-care tasks, such as bed bathing [6]. In
its original implementation, human models in Assistive Gym
match the average height and waist circumference of the US
male [6], [22]. Assistive Gym also provides a representation
for the policy π, and it can use RLlib’s [15] implementation
of SAC [9] for training, as used for our experiments.

IV. RESEARCH QUESTIONS

We investigate whether and how “representation bias” leads
to performance disparities across groups in RL for HRI. In
the rest of the paper, we will refer to “representation bias” to
mean the under-representation, in training episodes, of groups
of human participants with common characteristics.

We pose the following research questions:
• RQ1. Does imbalanced exposure to different groups dur-

ing training lead to performance disparities between those
groups? For example, training mainly on people with
an average waist circumference, and then deploying on
groups with below-average waist circumference.

• RQ2. Does balanced exposure to different groups during
training lead to equal performance across groups?

V. METHODOLOGY

Answering each research question requires training RL
policies on human models sampled from one distribution, and
evaluating the policies on another distribution. We adapted
Assistive Gym so that, in each training or evaluation episode,
human models are sampled from a normal distribution of waist
circumference—instead of both being fixed to the average
values of the US Male population. We chose waist circumfer-
ence as the varying human model parameter because there are
published statistics [20], and they can be easily introduced in
Assistive Gym. At every training episode the human model is
thus spawned with a waist-circumference value sampled from
a normal distribution. Two examples of such models in the
simulation environment are shown in Figure 1.

Fig. 1: The Bed Bathing environment of Assistive Gym, where
a set of contact points needs to be touched (washed) with a
sponge. Adapted so human models are spawned with waist
circumference parameters drawn from a distribution.

All our experiments use the Bed Bathing environment of
Assistive Gym, where the robot receives reward for each point
it touches (i.e. washes) on a human model lying on a bed
with a sponge. To answer RQ1-2 we trained multiple RL
policies, each trained on a specific distribution of human waist-
circumference. We trained the policies on GPU nodes of the
a high-performance computing cluster, for up to 6,000,000
timesteps each. Each evaluation of a policy is made over 200
episodes, which corresponds to 20 seconds of robot behaviour,
which we empirically verified to be a long enough horizon for
the robot to complete the task or make no further progress. To
alleviate issues with randomness in RL training and evaluation,
each trial of training and evaluation was repeated three times,
and results are therefore averages over 600 evaluation episodes
(3 policies, 200 episodes per policy).

VI. RESULTS

In this section, we report on the distributions, range of
parameters, and results for the experiments to answer each
research question. In each experiment, we measured perfor-
mance in terms of number of contact points touched (i.e.
washed) by the robot on the human model’s arm.

All plots for all experiments show the average contact points
hit across all trials. The error bars represent 95% confidence
intervals of the reported averages. Statistical significance tests
were obtained through the Student’s t-test.

A. RQ1: Does imbalanced exposure to different groups during
training lead to performance disparities?

To answer RQ1, we ran three experiments in which the
human’s height was fixed at the US Adult Male average, and



the waist circumferences (WC) were drawn in training from
normal distributions with different means. In the first experi-
ment, WC had a mean of 43.7cm. In the second experiment,
WC had a mean of 87.43 (US Adult Male [20]). In the third
experiment, WC had a mean of 122.4cm. We used a standard
deviation of 12.99 in all cases. Then, we evaluated the resulting
policies in the whole range of possible WC values.

Figure 2 shows that the policies performed better on groups
that had more exposure during training: the policy trained on
smaller-average WC had a performance peak at WC≈60, the
policy trained on average WC peaked at WC≈96, and the
policy trained on larger-average WC peaked at WC≈105. The
WC performance peaks are not exactly equal to the means of
the distribution, but there is a shift in performance with the
increase of distribution mean.

Within each experiment, task performance dropped drasti-
cally between top and bottom-performing groups. When the
policy was trained with a WC mean of 43.7cm, there was
a 95% difference between the best-performing model (WC:
61.2cm) and the worst-performing model (WC: 122.4cm).
When the policy was trained with a WC mean of 87.4cm,
there was an 86.6% difference between the best (WC: 96.2cm)
and the worst-performing model (WC: 43.7cm). And when the
policy was trained with a WC mean of 122.4cm, there was a
97% percentage difference between the best (WC: 104.9) and
the worst performing model (WC: 43.7cm). The differences
between the best performing and worst performing models
were statisticall significant in all 3 experiments (p < 0.0001).

B. RQ2: Does balanced exposure to different groups during
training lead to equal performance across groups?

RQ1 showed that policies performed best on groups that
had more exposure during training. Therefore, in RQ2 we
investigated whether uniform training can be used as a solution
to this problem. We fixed the height of the human model
to the mean, and trained on a uniform distribution of waist
circumference in the range 26.2cm–122.4cm.

Our results show there is an 80.2% difference between the
best performing group (WC: 69.94cm) and worst performing
group (WC: 122.4cm), and this difference is statistically sig-
nificant p < 0.0001. Groups with the largest and smallest waist
circumference performed worse than those with the average
waist circumference, despite being seen with equal probability
during training.

Therefore, our experiments show that uniform training does
not necessarily solve the performance disparity problem. We
hypothesize that differences observed are due to task properties
that make it harder for the robot to perform well for small and
large waist circumference groups, though further experiments
are required in order to better characterize this dependency.

VII. IMPLICATIONS AND MITIGATIONS OF PERFORMANCE
DISPARITIES IN RL-HRI

A. Implications

When robots are deployed to work with people at scale, it is
important that they work well with all types of people. When
trained with reinforcement learning, robots may perform better

with the types of people they observed more often during train-
ing. In the case of Assistive Gym, our experiments show that
a reinforcement learning agent trained on people following a
population-level distribution of waist circumferences performs
worse on people on the margins of that distribution–such as
obese individuals. Performance disparities in robots that utilise
RL to learn how to interact may have implications around trust,
the quality of service of robots, and safety.

In the Assistive Gym environment, we have shown that
providing the robot agent with a uniform distribution over
different types of people does not necessarily eliminate perfor-
mance disparities between different types of people. Training
robots with a uniform distribution of people is also likely
to be practically impossible in the real world, as a uniform
distribution of people may be hard to get access to, or may
consist an unethical practice if the selection is made across
protected characteristics.

In clinical settings like assistive bathing, a robot may
train with adults and later be deployed to assist children. In
real-world assistive robotics, it may be natural to make the
behaviour depend on the waist circumference of the person,
avoiding the particular issues we have identified. However,
there may be other, less obvious, features that a robot may
inadvertently learn to maximise return for that cannot be
anticipated easily during training.

In other contexts, such as the workplace, there may be
further consequences to this disparity in return across groups
of people. Human–robot collaboration is under active develop-
ment for warehouses and factories [13]. Here, a robot may end
up performing better with, or being safer around, one group of
people in the warehouse than with another, leading to feelings
of dissatisfaction and unfairness amongst workers [5].

Alternatively, if performance disparities between groups are
not attributed to the robot’s behaviour, further issues could
occur for the part of the workforce that the robot performs
worse on. A robot may work well with a majority group in
the workplace, with which it was trained, but perform collabo-
rative tasks poorly (more slowly, making costly mistakes more
often) with the minority group. It may appear that the robot
is performing its tasks well in general and therefore it is the
minority group who is under-performing. If the workers’ pay
is tied to an economic output quota, as is the case in many
warehouses, then an unfair financial disparity may also emerge
between the majority and minority groups.

A possible adjustment could be to train different policies
for different types of people, rather than have one singular
policy that works across all groups. For example, we can
treat each task with each group of people as a different task
entirely. Then, policies can be learnt that maximise the return
for each group specifically. However, we would need to know
at deployment time the specific features that belong to the
person the robot is working with. Accessing a person’s features
at deployment time might not always be feasible—especially
features such as height, weight, race, gender, class, etc.

A technical solution to the problem of performance dis-
parities would be to re-weight rewards based on group mem-
bership, increasing the rewards of less-seen or lower-return
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(a) Policy trained on humans with average
WC=43.7
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(b) Policy trained on humans with average
WC=87.43

43.7 69.9 96.2 122.4
0

2

4

6

8

Waist Circumference

A
ve

ra
ge

C
on

ta
ct

Po
in

ts
H

it

(c) Policy trained on humans with average
WC=122.4
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Fig. 2: Task performance when interacting with humans of different waist circumference. Three different policies. Differences
between performance of the top performing WC and bottom-performing WC are statistically significant in all cases p < 0.0001.
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Fig. 3: Task performance when interacting with humans of
different waist circumferences. Underlying policy trained on
a human model following a uniform distribution of waist
circumference.

groups so as to make the policy perform better on those
groups. Similarly, we could adjust the learning rate to speed
up and give more emphasis to lower-return groups in training.
However, this may be difficult to implement in practice, due
to the need for tuning weights or exploration parameters
and their trade-offs. A higher learning rate may also lead to
less predictable actions, as values change more rapidly, and
therefore decrease safety.

VIII. CONCLUSIONS

We investigated the problem of performance disparities in
RL for HRI using Assistive Gym as a case study. We found
that robots that learn to interact with humans using RL can
perform their tasks worse on people they do not see as often in

training. We also found that uniform exposure to people does
not necessarily lead to uniform performance, as task difficulty
may depend on the physical characteristics of humans.

We then discussed how, in practice, researchers and industry
could attempt to mitigate these problems, using different
technical and socio-technical approaches, and the potential
implications of such approaches. These implications concerned
precarious work contracts, direct and indirect discrimination
of different groups in hiring or robot access, and technical
challenges of bias mitigation in reinforcement learning for
robotics.

Some limitations of our study include the fact that we only
analyse a Bed Bathing task in Assistive Gym, and a single
training algorithm (SAC). In the future, it would be interesting
to test whether this phenomenon is more or less pronounced in
other types of tasks, training algorithms, and policy network
architectures.

Interesting directions of further work include investigating
how to create fairer reinforcement learning algorithms for HRI
that do not depend on knowing the features at deployment time
(i.e, making separate models for separate groups), or do not
depend on knowing group features at all. In the future, more
research on bias in RL should be conducted, for example on
bias encoded in reward functions and simulation environments,
bias mitigation algorithms, and social-technical approaches to
bias mitigation.
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