
Generating Environment-based Explanations of Motion Planner Failure:
Evolutionary and Joint-Optimization Algorithms

Qishuai Liu and Martim Brandão

Abstract— Motion planning algorithms are important compo-
nents of autonomous robots, which are difficult to understand
and debug when they fail to find a solution to a problem. In
this paper we propose a solution to the failure-explanation
problem, which are automatically-generated environment-based
explanations. These explanations reveal the objects in the
environment that are responsible for the failure, and how their
location in the world should change so as to make the planning
problem feasible.

Concretely, we propose two methods—one based on evo-
lutionary optimization and another on joint trajectory-and-
environment continuous-optimization. We show that the evo-
lutionary method is well-suited to explain sampling-based
motion planners, or even optimization-based motion planners
in situations where computation speed is not a concern (e.g.
post-hoc debugging). However, the optimization-based method
is 4000 times faster and thus more attractive for interactive
applications, even though at the cost of a slightly lower success
rate. We demonstrate the capabilities of the methods through
concrete examples and quantitative evaluation.

I. INTRODUCTION

Motion planning algorithms are important components
of autonomous robots, which compute a trajectory for a
robot’s degrees of freedom so as to achieve a given task,
such as navigation or manipulation. Unfortunately they are
known to lack interpretability and explainability [1], [2], as
they often fail to find solutions to problems with no clear
explanation provided. User studies with practitioners have
shown that debugging and understanding failure is indeed
difficult even for experts [2], [3], and that automatically
generated explanations of failure could be useful in solving
this problem [2], [3]. Explanations of planner failure could
not only help users and engineers understand why planners
fail, when they fail, but also predict future failures and make
changes to the environment so as to avoid failure [1], [2].

In this paper we propose two methods to generate
environment-based explanations for motion planning failure,
or in other words: to answer the question “why did the planner
fail to find a solution to this problem?”. Our automatically-
generated explanations provide an answer of the type “because
of the location of object X. If it had been in location B
instead of A, then the planner would have succeeded”. This
is called a contrastive explanation because it provides a
different situation (an environment change) to contrast the
failure to. This has been shown to be an important property of
explainable algorithms [4]. The explanation is also actionable
[5], [3] because it allows a user (or the robot itself) to enact
that change on the environment so the robot can solve the
original problem.

Both authors are with King’s College London, UK.

Our explanation methods work by computing environment
changes either within an evolutionary optimization algorithm,
or within a single optimization problem which solves motion
planning and explanation (i.e. environment-configuration)
problems simultaneously.

Our contributions are thus the following:
1) We propose two environment-based explanation-

generation algorithms to explain motion planner failure:
targeted at both sampling and optimization-based mo-
tion planners,

2) We demonstrate the methods through concrete examples,
evaluate them, and discuss advantages and disadvan-
tages of each.

II. RELATED WORK

This paper is aligned with a recent research interest in
explainable AI [6] and explainable task planning [7]. Here
we focus on generating explanations for motion planning [1],
which robotics practitioners believe could help solve important
problems in robot deployment [2]. Recent user studies have
shown different properties of explanations which are desirable
in motion planning [2] and robotics [8]—including the
presence of environmental context [8], contrastiveness [1],
and actionability [2]. Our proposed explanations possess all
these properties, since they are based on environment object
changes, they provide an environment change that leads to
successful planning, and they can be used to actually move
objects in the world and allow the planner to succeed.

Perhaps the closest work to our own is Hauser’s “Minimum
Constraint Removal” problem [9], which computes a minimal
subset of objects to remove from an environment in order to
make a sampling-based motion planner succeed. Compared to
[9], our evolutionary method is general enough to be applied
to both sampling-based and other kinds of motion planning
algorithms (e.g. trajectory optimization). Additionally, the
explanations we focus on do not eliminate objects, but instead
identify pose changes that lead to success—which could be
helpful in triggering recovery behaviour that moves those
objects before solving the original problem.

Other related work includes that on communicating planner
failure [10], which computes plans that are as close as possible
to achieving the goal but do not break any other feasibility
constraints (e.g. do not break collision constraints). However,
such algorithms do not explicitly identify objects or object
states that lead to failure.

Other approaches to explanation-generation in motion
planning include disconnection proofs [11] and feasibility
visualization methods [12]. Approaches targeted at complete
robot systems include the use of machine learning methods

to compute causal models of robot failure [13]. Finally, and
also similar in spirit to our method are “excuse generation”
methods in the task planning field—which compute changes
to an infeasible (task planning) problem so as to make it
feasible [14].

III. BACKGROUND

The goal of robot motion planning algorithms is to compute
a trajectory for a robot’s degrees of freedom from a start
configuration q1 ∈ C to a target configuration qT ∈ C,
where T is the number of time steps. The space of robot
configurations C is typically equal to RD where D is the
number of degrees of freedom (e.g. joint angles), or it can
also be the composition of various spaces (e.g. joint angle
space and SE(3)). The trajectory can be defined as a set
of waypoints ξ = {q1, . . . , qT }, and the motion planning
problem can be written as an optimization problem:

minimize
ξ

f(ξ) (1)

s.t. gi(ξ) ≤ 0 i = 1, . . . , nineq

cre
i (ξ) ≤ 0 i = 1, . . . , nineq re

crr
i (ξ) ≤ 0 i = 1, . . . , nineq rr

hi(ξ) = 0 i = 1, . . . , neq

where f is the objective function to optimize (e.g. trajectory
length), cre

i are inequalities representing collision constraints
between the robot and the environment, crr

i are similar self-
collision constraints (i.e. between different parts of the robot),
gi are other inequality constraints on the trajectory (e.g.
joint angle limits), and hi are equality constraints (e.g. start
configuration, position of a link of the robot at time T).
All these functions are scalar functions. In this paper we
distinguish between different types of inequalities gi, cre

i and
crr
i as this will be convenient later on when defining our

method. One common objective function is the total length
of the trajectory, defined as:

f(ξ) =

T−1∑
i=1

∥qi+1 − qi∥2 (2)

Such motion planning problems can be solved using
optimization-based methods [15], [16] or sampling-based
methods [17].

IV. METHODOLOGY

Motion planning algorithms can fail to find a solution
to a problem. As we have already described, our goal in
this paper is to develop a method that can automatically
compute an explanation for a failure. In particular, we focus
on environment-based explanations: which are explanations
that identify the part of the environment that is responsible
for the failure [1]. In other words, our goal is to compute
a small change to an environment E (e.g. from EA to EB)
that leads the motion planning algorithm to succeed to find a
plan. In this case, an environment-based explanation for the
failure is that “the planner failed because the environment is
not EB”. Please see Fig. 2 for an example.

Formally, we define the environment E = {O,G} as a
set of objects with poses O = {o1, ..., on}, and arbitrary
geometries G = {γ1, ..., γn}, where each pose oi ∈ SE(3).
This definition is general enough to encompass environments
defined as set of object primitives, 3D meshes, or occupancy
grids.

We assume there is a motion planning problem of the type
(1), with environment objects O, that a planner cannot solve.
We further distinguish between two kinds of objects: those
whose pose we allow to serve as an explanation for failure
Oc (i.e. whose pose we assume could be different), and those
we don’t allow to serve as an explanation for failure Ou

(i.e. whose pose we will always leave unchanged). In this
paper we assume that all movable objects can serve as an
explanation, and assume that an oracle algorithm is capable
of identifying whether each object is movable or not, and
thus usable for the explanation or not.

Our goal is then to compute a new pose vector O′
c that is

as close as possible to Oc, but leads the motion planner to
find a solution to the problem. This explanation problem can
also be stated as an optimization problem. For this we define
a new variable X = {ξ,O′

c} and rewrite (1) as:

minimize
X

f(X) (3)

s.t. gi(X) ≤ 0 i = 1, . . . , nineq

cre
i (X) ≤ 0 i = 1, . . . , nineq re

crr
i (X) ≤ 0 i = 1, . . . , nineq rr

hi(X) = 0 i = 1, . . . , neq

However, problem (3) does not consider collisions between
O′

c and Ou, which may happen as a result of making O′
c an

optimization variable—and which would lead to the gener-
ation of physically unrealistic explanations. Therefore, we
add an extra “environment-environment” collision constraint
cee
i (X) which avoids collisions between O′

c−O′
c and O′

c−Ou:

minimize
X

f(X) (4)

s.t. gi(X) ≤ 0 i = 1, . . . , nineq

cre
i (X) ≤ 0 i = 1, . . . , nineq re

crr
i (X) ≤ 0 i = 1, . . . , nineq rr

cee
i (X) ≤ 0 i = 1, . . . , nineq ee

hi(X) = 0 i = 1, . . . , neq

The objective function f(X) can now consider not only
the quality of the robot trajectory ξ, but also the quality of the
explanation (i.e. the environment change). Explanation quality
is often modeled as the length of an explanation [1]—which
can also be defined as the degree of change to the original
environment [18]. We thus model the objective function as
the weighted sum of two parts:

f(X) = f1(ξ) + αf2(O
′
c) (5)

where α is a constant weight parameter, f1 is the same cost
function (2) used to (unsuccessfully) solve the original motion
planning problem and f2 is defined as:

f2(O
′
c) = ∥O′

c −Oc∥1 (6)

This objective thus ensures that the explanation will make
small changes to the original problem.

In order to solve (4), we propose two methods: one
evolutionary method (particularly suited to sampling-based
motion planners) and one continuous-optimization method
(particularly suited to optimization-based motion planners).

A. Evolutionary method
The main motivation for the evolutionary method is that

some motion planning algorithms are not differentiable, and
thus we cannot differentiate the value of trajectory costs
or constraints with respect to O′

c. In order to solve the
explanation problem in such cases, we thus propose to turn
(4) into a bi-level optimization problem:

minimize
O′

c

f1(ξ
∗) + αf2(O

′
c) (7)

s.t. ξ∗ = argmin
ξ

f1(ξ) (8)

s.t. gi(ξ,O
′
c) ≤ 0 i = 1, . . . , nineq

cre
i (ξ,O

′
c) ≤ 0 i = 1, . . . , nineq re

crr
i (ξ,O

′
c) ≤ 0 i = 1, . . . , nineq rr

cee
i (ξ,O

′
c) ≤ 0 i = 1, . . . , nineq ee

hi(ξ) = 0 i = 1, . . . , neq

where (8) is solved using the original motion planning
algorithm (e.g. RRT*), and (7) is solved by an evolutionary
algorithm.

In this paper, we use Particle Swarm Optimization (PSO)
to solve (7). PSO basically mimics the behavior of flocks of
birds when searching for food. If one of the birds finds food—
one of the particles finds a low-cost objective—PSO will use
this information to move the swarm towards that location
gradually. We choose PSO instead of other methods because
it can handle non-differentiable problems, is computationally
inexpensive, and requires tuning only a small number of
parameters [19]. However, other evolutionary algorithms
could similarly be used.

Pseudo-code for the algorithm is shown in Algorithm 1.
Basically, each particle in the swarm holds a value of O′

c,
and each particle is evaluated by attempting to solve the
corresponding motion planning problem (where Oc is changed
to O′

c). This motion planning problem is solved in line 8 of
Algorithm 1 and corresponds to solving equation (8). If the
planner succeeds, then a trajectory ξ is obtained, and the value
of the particle is set to f1(ξ)+αf2(O

′
c) (line 12). Otherwise,

the value is set to a large number to avoid having the swarm
move in the direction of this particle. The algorithm keeps
track of the best particle found O∗

c—which is the one with
the lowest objective. We use an open implementation of PSO
[20] to implement this algorithm.

B. Continuous joint-optimization method
Optimization-based motion planning algorithms should by

definition be able to solve (4) explicitly. In practice, however,
most planners’ implementations do not provide capability to
model environment-parameter variables by default. This is
the case of two popular optimization-based motion planners:
Trajopt [16] and CHOMP [15].

Algorithm 1: PSO for explanation-generation
Data: Environment objects (Ou, Oc), problem

constraints (g, cre, crr, cee, h), population size
(S)

1 O∗
c ← ∅ ;

2 P ← RandomlySampleParticles(Oc, S) ;
3 for it = 1, ..., MaxIter do
4 for p in P do
5 UpdateParticleVelocity(p, O∗

c) ;
6 UpdateParticlePosition(p) ;
7 O′

c ← GetParticlePosition(p) ;
8 ξ ← MotionPlanner(Ou, O′

c, g, cre, crr, cee, h)
;

9 if ξ = ∅ then
10 UpdateParticleValue(p, ∞) ;

11 else
12 UpdateParticleValue(p, f1(ξ) + αf2(O

′
c)) ;

13 O∗
c ← UpdateBestParticleFoundSoFar(O∗

c , P) ;

14 return O∗
c

For the experiments in this paper we used a practical
re-formulation of (4) that allows the problem to be solved
explicitly by Trajopt (through Sequential Quadratic Program-
ming) without changes to the planner’s implementation. The
main idea is to remove objects Oc from the environment,
and include them as virtual links in the robot model. These
virtual links are connected to the robot’s base link by virtual
joints whose values are new optimization variables.

Formally, let b ∈ SE(3) be the pose of the base link of the
robot in the world. And let C = |Oc| be the number of objects
we allow to serve as an explanation. We then define a set of
virtual-joint variables V = {v1, . . . , vC}, where vi ∈ SE(3),
such that bvi = o′i for all i = 1, . . . , C. Intuitively, vi is the
transformation from the base link of the robot to virtual link
i, which corresponds to object i in O′

c. The configuration
space of this new virtual robot model is now ξv = {ξ,V},
where V = {V1, . . . , VT } are T waypoints for the virtual
joint states. The explanation problem now becomes a regular
motion planning problem:

minimize
ξv={ξ,V}

f1(ξ) + αf2(ξv) (9)

s.t. gi(ξv) ≤ 0 i = 1, . . . , nineq

cre
i (ξv) ≤ 0 i = 1, . . . , nineq re

crr
i (ξv) ≤ 0 i = 1, . . . , nineq rr

hi(ξv) = 0 i = 1, . . . , neq

Vi = Vi+1 i = 1, . . . , T − 1 (10)

where collisions between O′
c and Ou are now implemented as

“robot”-environment collisions cre
i , and collisions between the

real robot and O′
c are now implemented as “self”-collisions

crr
i . The second component of the objective function f2(ξv)

is still as shown in (6), where O′
c is computed as O′

c =
[bv1, . . . , bvC]. The constraint (10) ensures the explanation
consists of a static environment (i.e. we compute a single

Fig. 1. Infeasible problems for the shelf scene (top) and table scene (bottom). The problem involves moving the robot’s end-effector from the orange
cylinder (or under the table) to the red cylinder.

environment change that is constant at all times 1, . . . , T).
To summarize, then, if we try to solve a motion planning

problem with Trajopt and it fails to find a solution, we
automatically generate an environment-based explanation
in two steps. First, we create a new virtual robot model
where objects that we allow to serve as explanation are added
as virtual links connected to the base link. In this paper
we assume an oracle algorithm is capable of identifying
which objects are movable, and allow those to be used as
explanation. This virtual robot model is then used to solve
the motion planning problem (9). If the planner is successful,
then the result tells one possible change in environment object
locations that leads the original problem to be feasible.

V. RESULTS

In order to demonstrate and evaluate our explanation-
generation methods, we first generated a set of unsolvable
motion planning problems, and then used our methods to ob-
tain explanations for motion planner failure. Our experiments
use RRT [21] as the sampling-based motion planner, Trajopt
[16] as the optimization-based motion planner, and DEAP
[20] for the implementation of PSO.

We used MotionBenchMaker [22], a tool to generate mo-
tion planning problems by randomly setting poses of objects
in pre-specified environments, to generate 40 unsolvable
motion planning problems. We generated 20 problems in
a grasping scenario on a table, and 20 problems in an object
re-placement scenario on a bookshelf (both available through
MotionBenchMaker). We show a subset of 5 problems from
each scene in Fig. 1. In the bookshelf scenario the robot
has to move its end-effector from the orange object to the
red object, while in the table scenario the robot starts with
the end-effector under the table and has to move it to the
red object on top of the table. The problems are unsolvable
because there are other objects in the environment that the
robot would have to collide with in order to be able to grasp
the red object.

We run PSO for MaxIter=150 generations, which was
sufficient for the method to converge, and we use population
size S=100. The explanation weight α was set to 100, such
as to obtain small-change explanations.

We start by qualitatively analyzing the results of our
methods in each of these scenarios, and then report on
efficiency and success-rate results.

A. Qualitative results

Fig. 2 shows the result of applying the evolutionary method
to explain the failure of RRT in one of the bookshelf problems.
The problem is infeasible because one of the cylinders
(highlighted in yellow) is too close to the target object, and
thus prevents the robot from reaching it without collision. To
generate the explanation, we assume all objects except the
bookshelf are movable, and thus usable for explanation. The
objects are furthermore constrained to lie on their respective
shelves—i.e. Oc is the (x, y) position of all green and yellow
cylinders. Fig. 2 (middle) shows the computed explanation,
which is a minimal displacement of the yellow object’s
position that leads RRT to find a plan. The figure could
be provided to a user as an explanation for failure, together
with the text: “The motion planner failed because of the object
shown in transparent-yellow. If the object was in the position
shown in solid-yellow, then the planner would succeed”. This
explanation could be used as part of a user interface, that asks
a user for help (to move the yellow object) so the robot can
complete its task. Alternatively, it could be used to trigger
a recovery behavior that plans motion to move the yellow
object before going back to the original task. Even though the
positions of all (yellow and green) cylinders are part of the
optimization variable O′

c, the minimization of ∥O′
c − Oc∥1

leads our method to find a displacement that affects only one
object—the one that has an effect on planner success rate.
Fig. 2 (right) shows a plan obtained by RRT once the object
is moved according to the explanation.

We also computed an explanation to this problem using
our continuous joint-optimization method. Fig. 3 shows the
result, where we can see that the planner arrives at a similar
explanation to that found by PSO (i.e. Trajopt failed because
of the yellow cylinder, though it succeeds if the cylinder is
moved to the right). In this image the explanation is shown
in grey, while the original position of the cylinder is shown
in yellow.

Fig. 2. Example explanation problem on a shelf scene. Left: The original planning problem, where the robot needs to move end-effector from the orange
cylinder in the bottom, to the red one in the top. The green and yellow cylinders are obstacles which we assume to be movable. The yellow cylinder is
shown in a different color to highlight that it is the one responsible for failure. Center: The explanation for failure computed with PSO, which shows that
moving the object from the transparent to the solid location would make the problem feasible. Right: A feasible trajectory found by RRT, after the yellow
object is moved according to the explanation.

Fig. 3. Explanation-generation example using our joint trajectory-and-
environment optimization method on Trajopt, where both robot trajectory
and explanation (i.e. object displacement) are optimized. The yellow cylinder
represents the obstacle’s location on the original problem, grey represents
the explanation (required movement such as to make the planner succeed).
Black lines and green arrows represent collision constraints.

Another example, on the table scene, is shown in Fig. 4.
Here, the yellow box prevents the robot from reaching its
target object without collision, thus making RRT fail. In this
scenario we include object yaw-orientation as part of the
optimization variables, since unlike the bookshelf scenario
the objects are not rotation-symmetric. Fig. 4 (middle) shows
the explanation computed by PSO: which identifies the object
responsible for failure and a minimal pose-change that leads
RRT to succeed. Fig. 4 (right) shows the resulting trajectory
obtained by RRT after the yellow object is moved according
to the explanation.

B. Quantitative evaluation

We then ran a quantitative evaluation of the evolutionary
and optimization-based explanation algorithms, on 20 infea-
sible problems of each scene. We solved the explanation
problems using:

1) The evolutionary (PSO) method using RRT as the

planner, and a 3-second computation time budget for
RRT,

2) The evolutionary (PSO) method using Trajopt as the
planner,

3) The joint-optimization method, using Trajopt.

Table I shows the results in all conditions. The metrics
used to compare the different methods are: explanation cost,
success rate of the explanation algorithm, and computation
time. The explanation cost is the value of Eq. (5). The
success rate indicates the number of problems for which an
explanation was computed (i.e. for which the method could
find an environment-change that made the planning problem
feasible). Computational time is the average time to compute
an explanation per problem. The evolutionary method was
around twice as fast to solve the problem when using Trajopt
as the planner, when compared to RRT. This was expectable
as Trajopt is very fast to fail when it fails, compared to RRT
that has to wait for a computation time budget. In both cases
the method succeeded to find an explanation in 100% of the
problems, and the cost of the explanation (i.e. equation (5))
was similar with both planners. The computation times were
quite high, up to 2 hours using RRT and up to 1 hour using
Trajopt. This indicates the evolutionary method is appropriate
when computational time is not a concern, such as in post-hoc
debugging or accident investigations [23], or when there is no
other choice because the motion planner in use is a black-box
(e.g. closed-source) or non-differentiable.

The continuous joint-optimization method on the other
hand, as shown on Table I, was around 4000 times faster
than the evolutionary method. When the evolutionary method
computes an explanation for Trajopt-failure, it takes between
30 and 60 minutes, while the joint-optimization method
(solved with Trajopt itself through problem reformulation
as described in Section IV-B) takes less than a second. This
demonstrates the advantage of using our continuous optimiza-
tion formulation. However, there are two disadvantages to
this method: 1) it is only applicable to optimization-based

Fig. 4. Example explanation problem on a table scene. Left: The original planning problem, where the robot needs to move end-effector from below the
table to the red cylinder on top of the table. The green and yellow objects (except the table) are obstacles which we assume to be movable. The yellow box
is shown in a different color to highlight that it is the one responsible for failure. Center: The explanation for failure computed with PSO, which shows that
moving the object from the transparent to the solid location would make the problem feasible. Right: A feasible trajectory found by RRT, after the yellow
object is moved according to the explanation.

TABLE I
QUANTITATIVE RESULTS ON 20 PROBLEMS OF EACH SCENE

Evolutionary method (RRT) Evolutionary method (Trajopt) Joint-Optimization method (Trajopt)
Explanation Success Comp. Explanation Success Comp. Explanation Success Comp.

cost rate time cost rate time cost rate time
Bookshelf scene 18.34± 1.24 100% 124.2± 9.54min 18.46± 1.35 100% 62.3± 5.05min 16.27± 0.26 90% 0.879± 0.054s

Table scene 9.90± 1.15 100% 73.3± 7.76min 9.80± 1.25 100% 34.6± 4.46min 8.87± 0.16 95% 0.526± 0.023s

planners; and 2) as Table I shows, the method had a success
rate of 90% on the shelf scene and 95% on the table scene,
which means that the method is more likely not to be able to
find a solution to an explanation problem. This is due to the
added complexity of the optimization problem, even though
some techniques such as “multi-starts” [24] and stochastic
optimization [25] could potentially alleviate this issue.

VI. CONCLUSIONS

In this paper we proposed two new methods for generating
environment-based explanations of motion planner failure.

One method uses evolutionary optimization to find minimal
changes to the environment that lead the motion planner
to succeed to find a plan. This method can be applied
to any motion planning algorithm, since it is only calling
an existing motion planner in every iteration with a new
environment. However, as our experiments show, this process
is inefficient and leads to slow computation times which
would be impractical for interactive interfaces—although it
could be used in post-hoc debugging or accident investigation
scenarios [23].

We also proposed another method targeted specifically at
optimization-based motion planning algorithms, which works
by framing the explanation problem as a joint trajectory-
and-environment optimization problem. We show this can be
implemented as a new motion planning problem with virtual
robot links and self-collision constraints, and it leads to very
fast computation times (approximately 4000 times faster).
The results showed that the method can have a slightly lower
success rate than the evolutionary one, due to the increased
complexity of the optimization problem. In the future, this
flaw could potentially be tackled with improvements to the
motion planning algorithm (e.g. through randomization [24],
[25]).

The explanations produced by our algorithms could be
used as part of future user interfaces, where the robot can ask
humans to help move an object out of the way so the robot can
complete its task. Alternatively, the explanations could be used
for user probing (e.g. for answering a user that asks “why did
you fail?”), or they could even be used to automatically trigger
recovery behaviour that plans and executes motion to move the
object before returning to the original task. Possible future
research directions include user studies to understand the
reception of users to these explanations in different contexts,
other models of explanation quality, and computer vision
algorithms for detecting movable objects and their physical
constraints. Scalable extensions of the methods to point cloud
and occupancy grid representations are also important research
directions.

REFERENCES

[1] M. Brandao, G. Canal, S. Krivic, and D. Magazzeni, “Towards
providing explanations for robot motion planning,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), Jul
2021, pp. 3927–3933.

[2] M. Brandao, M. Mansouri, A. Mohammed, P. Luff, and A. Coles,
“Explainability in multi-agent path/motion planning: User-study-driven
taxonomy and requirements,” in International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), May 2022, p.
172–180.

[3] M. Brandao, G. Canal, S. Krivic, P. Luff, and A. Coles, “How experts
explain motion planner output: a preliminary user-study to inform the
design of explainable planners,” in IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN), Aug 2021,
pp. 299–306.

[4] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, 2019.

[5] R. Singh, T. Miller, H. Lyons, L. Sonenberg, E. Velloso, F. Vetere,
P. Howe, and P. Dourish, “Directive explanations for actionable
explainability in machine learning applications,” ACM Transactions on
Interactive Intelligent Systems, 2023.

[6] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcı́a, S. Gil-López, D. Molina, R. Benjamins,
et al., “Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai,” Information fusion,
vol. 58, pp. 82–115, 2020.

[7] T. Chakraborti, S. Sreedharan, and S. Kambhampati, “The emerging
landscape of explainable ai planning and decision making,” arXiv
preprint arXiv:2002.11697, 2020.

[8] D. Das, S. Banerjee, and S. Chernova, “Explainable ai for robot failures:
Generating explanations that improve user assistance in fault recovery,”
in Proceedings of the 2021 ACM/IEEE International Conference on
Human-Robot Interaction, 2021, pp. 351–360.

[9] K. Hauser, “The minimum constraint removal problem with three
robotics applications,” The International Journal of Robotics Research,
vol. 33, no. 1, pp. 5–17, 2014.

[10] M. Kwon, S. H. Huang, and A. D. Dragan, “Expressing robot
incapability,” in Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, 2018, pp. 87–95.

[11] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen, “Disconnection
proofs for motion planning,” in ICRA. IEEE, 2001, pp. 1765–1772.

[12] J. Kottinger, S. Almagor, and M. Lahijanian, “Maps-x: Explainable
multi-robot motion planning via segmentation,” in 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2021,
pp. 7994–8000.

[13] M. Diehl and K. Ramirez-Amaro, “Why did i fail? a causal-based
method to find explanations for robot failures,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 8925–8932, 2022.

[14] M. Göbelbecker, T. Keller, P. Eyerich, M. Brenner, and B. Nebel,
“Coming up with good excuses: What to do when no plan can be
found,” in Proceedings of the International Conference on Automated
Planning and Scheduling, ser. ICAPS’10. AAAI Press, 2010, p. 81–88.

[15] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” in 2009 IEEE
international conference on robotics and automation. IEEE, 2009,
pp. 489–494.

[16] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[17] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[18] M. Brandao, A. Coles, and D. Magazzeni, “Explaining path plan
optimality: Fast explanation methods for navigation meshes using
full and incremental inverse optimization,” in Proceedings of the
International Conference on Automated Planning and Scheduling
(ICAPS), Aug 2021, pp. 56–64.

[19] F. Marini and B. Walczak, “Particle swarm optimization (pso). a
tutorial,” Chemometrics and Intelligent Laboratory Systems, vol. 149,
pp. 153–165, 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0169743915002117

[20] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, “Deap: Evolutionary algorithms made easy,” The Journal of
Machine Learning Research, vol. 13, no. 1, pp. 2171–2175, 2012.

[21] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE,
2000, pp. 995–1001.

[22] C. Chamzas, C. Quintero-Pena, Z. Kingston, A. Orthey, D. Rakita,
M. Gleicher, M. Toussaint, and L. E. Kavraki, “Motionbenchmaker:
A tool to generate and benchmark motion planning datasets,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 882–889, 2021.

[23] A. F. Winfield, K. Winkle, H. Webb, U. Lyngs, M. Jirotka, and
C. Macrae, “Robot accident investigation: a case study in responsible
robotics,” Software engineering for robotics, pp. 165–187, 2021.

[24] M. Brandao, K. Hashimoto, and A. Takanishi, “Sgd for robot motion?
the effectiveness of stochastic optimization on a new benchmark for
biped locomotion tasks,” in 17th IEEE-RAS International Conference
on Humanoid Robots (Humanoids), Nov 2017.

[25] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in 2011
IEEE international conference on robotics and automation. IEEE,
2011, pp. 4569–4574.

