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Abstract— Motivated by experiments showing that humans
regulate their walking speed in order to improve localization
performance, in this paper we explore the effects of walking
gait on biped humanoid localization. We focus on step length
as a proxy for speed and because of its ready applicability to
current footstep planners, and we compare the performance of
three different sparse visual odometry (VO) algorithms as a
function of step length: a direct, a semi-direct and an indirect
algorithm. The direct algorithm’s performance decreased the
longer the step lengths, which along with the analysis of inertial
and force/torque data, point to a decrease in performance due to
an increase of mechanical vibrations. The indirect algorithm’s
performance decreased in an opposite way, i.e., showing more
errors with shorter step lengths, which we show to be due to
the effects of drift over time. The semi-direct algorithm showed
a performance in-between the previous two. These observations
show that footstep planning could be used to improve the
performance of VO algorithms in the future.

Index Terms - Localization, ego-motion, visual odometry,
humanoid robot, WABIAN-2R

I. INTRODUCTION

If humanoid robots are to become more useful in our
daily life, their capabilities should be improved to be able to
autonomously realize various tasks effectively and in a robust
manner. The ability to self-localize in the environment is an
important step in that direction. One common way for the
robot to self-localize is through odometry algorithms, i.e., the
estimation of the robot’s change in position through the use
of motions sensors, such as cameras, inertial measurement
units (IMU), motor encoders, etc. These sensors can be
used independently, as is the case of visual odometry (VO)
algorithms, or their information can be combined to get better
estimates, using algorithms as the Kalman or particle filters.

One approach to improve localization performance is
to change the path a robot takes to a goal or the goals
themselves in a way that optimizes said performance.This is
called active localization, which refers to the act of partially
or fully controlling the motions of the robot to minimize the
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uncertainty and increase the efficiency and robustness of the
estimation of its current pose [1], [2]. Humanoid robots could
potentially change inter-limb coordination or gait parameters
while keeping the same base trajectory, to affect the camera
motion and improve the robot’s localization performance.

One example of the effect of walking styles on self-
localization systems can be found in humans, as we regulate
our walking speed in order to improve our localization
with our eyes closed [3]. However, current humanoid robot
walking controllers and localization systems are built in ways
fundamentally different from that of biological systems, and
are not built purposely to achieve similar localization perfor-
mance behavior (i.e. similar relationship between walking
speed and localization accuracy). Moreover, previous work
with hexapod robots has found inconclusive and irregular
variation of SLAM performance with gait parameters [4].

With the above in mind, the contribution of this paper
is to answer the following questions regarding localization
systems for biped humanoid robots:

• Does performance of such systems depend consistently
and non-trivially with humanoid gait?

• What effects do different walking styles have on the
performance of such systems?

The approach in this paper is data-driven, i.e., we do
not try to predict localization performance from simplified
mechanical, control, sensor, or environment models. Instead,
we directly measure localization performance of the whole
system, by using ground-truth data from motion capture
from experiments while varying the robot’s walking gait
parameters. For this paper, the parameter we focus on is step
length, as it is a useful and readily applicable representation
for humanoid robot locomotion planning, as in footstep
planning, and because several relevant humanoid robot lo-
comotion performance metrics as energy and slippage have
been shown to depend on step length [5]. We describe this
data-based approach and the data analysis in Section III.
In section IV we present the relationships found between
localization performance for three different VO algorithms
and the mentioned gait parameters in our robotic platform.
We also we discuss the possible explanations for the observed
relationships.

II. RELATED WORK
Self-localization for humanoid robots has been widely

researched. In the case of VO algorithms, Stasse et al.
[6] proposed a real-time monocular Visual Simultaneous
Localization and Mapping (VSLAM) algorithm taking into
account robot kinematics from the walking pattern generator.



In [7], an IMU based state estimation for a stereo based 3D
SLAM is proposed, using measurements from the stereo VO
and robot kinematics as updates for the Extended Kalman
Filter. In [8], the authors propose an unscented Kalman filter
to estimate the ankle and hip states of a biped robot, to then
use a support vector regression learning controller for bipedal
walking. Xinjilefu et al. [9] propose a decoupled estimation,
first using a joint dynamics estimator, and then a base link
position estimator, instead of including all that information
in a single filter, in order to reduce the computational cost
but sacrificing some accuracy. In [10], a bipedal robot state
estimator is proposed, based on another originally designed
for a quadruped robot [11]. These estimators make the filter
update based on feet measurements.

Regarding active localization using vision sensors, David-
son et al. [12] were the first to take the effects of actions into
account for localization, using a stereo system attached to a
mobile robot and trying to minimize the motion drift along a
predefined trajectory. Also, one of the common approaches
is the ”Next Best View” approach, which as the name states,
seeks a single additional sensor placement to reduce the
localization error of the system [13]. There have been works
proposing different criteria to estimate the influence of the
robot motions on SLAM, for example focusing on Kalman
filter based approaches [14], or on the effect of the camera
motion on the stability of visual localization for aerial robots
[15].

Also for aerial robots, methods to select paths with mini-
mum pose uncertainty while considering the robot’s dynam-
ics have been proposed [16], as well as methods to plan
paths with richer visual features [17], and more recently a
method that computes the localization uncertainty optimally
incorporating photometric and geometric information [2].

For legged robots, [4] assessed the localization accuracy
of a hexapod robot in different types of terrain changing
the robot’s gait accordingly, using an RGB-D sensor. For
biped humanoid robots, active visual localization has been
researched from different perspectives, as active localization
to improve the interactions of the robot with its environment
for object manipulation [18], an active vision system to
estimate the location of objects while walking [19], or a
task-oriented active vision system for a vision-guided bipedal
walking [20]. However, none of the above assessed the effect
of the walking motion itself on the performance of the robot’s
localization, nor used this information to plan or modify
the walking gait of the robot to obtain a better localization
estimate.

From the biological point of view, humans mainly use
visual, gravitational/inertial and proprioceptive cues for ego-
motion estimation. Moreover, humans change the weight
they put on each sensory input depending on the situation
[21], [22]. Also, we know humans plan their walking gait
ahead in many situations, as to keep stability in difficult
situations like slippery terrains [23], but we also change
gait parameters when there are problems with the sensory
inputs, such as decreasing walking speed or leaning the trunk
backwards when visual disturbances arise [24]. Moreover,

different sensory modalities perform better depending on
our motions. The visual system performs better at lower
frequencies than the vestibular system, but both are integrated
in an optimal manner [25]. There is also evidence pointing
out that modifying the walking speed has effects on our path
integration abilities, making us underestimate distances when
walking at slower speeds [3], as well as walking cadence
affecting the performance of path integration, achieving the
best performance at about 2 Hz [26].

III. METHODOLOGY
As explained in Section I, in this paper we focus on

the effects of step length on localization performance. We
generated one walking pattern for each step length with a
fixed total walking distance of 1.5 m on a straight line. Step
lengths were 0.1, 0.125, 0.15, 0.175, 0.2, 0.225 and 0.25 m.
Step lengths shorter than 0.1 m resulted in unstable gaits,
while step lengths longer than 0.25 m were not tested since
they were close to the mechanical limits of the robot. The
step width was maintained constant at 0.08 m. Five runs
were performed for each step length with the robot having
the knees bent, i.e., maintaining a fixed height for the center
of mass (CoM), and therefore for the camera. The reference
walking cadence was fixed to 0.96 s/step, 0.06 seconds for
double support phase and 0.9 seconds for single support
phase. All patterns were executed on the robot by joint
position control without any state estimation (i.e. assuming
the reference trajectory of the base was executed perfectly).
The motion capture and robot’s joints, force, IMU and image
data were stored and later analyzed 1. The experiments were
carried out inside a texture-rich laboratory environment.

A. System Overview

For the experiments in this paper we used the biped
humanoid robot WABIAN-2R [27] (Fig. 1), a 33 Degrees of
Freedom (DoF) bipedal humanoid robot. For the visual input,
we used a Matrix Vision mvBlueCOUGAR-X, a global shut-
ter monocular camera, together with a low distortion wide
angle lens of focal length 1.28 mm, a Field of View (FOV)
of 125 deg and a distortion of 3%. The stream of images
was set to 117 Hz, and the camera was mounted on the head
of the robot (Fig. 2). For the ground truth measurements, a
motion capture system OptiTrack V120:Trio at 120 fps was
used, placing the photo-reflective markers on the camera to
obtain the actual trajectory.

The different reference frames and transformations used
for the experiments can be seen on Fig. 3. We use two
main reference frames, W and Ct, the world frame and the
camera system frame at time t, respectively. Also, following
the notation used in [28], we define (est)TAti

→Btj
as the

transformation of frame B at time tj relative to frame A
at time ti, calculated with the estimator est. The motion
capture system tracks the camera system in the world frame,
(gt)TW→Ct

, whereas the VO system tracks the motion of the
camera system relative to its initial frame, (vo)TCinit→Ct

.

1The datasets can be found at:
https://github.com/yuchango/wabian_experiments



Fig. 1. Robotic platform WABIAN-2R (left) and DoF configuration (right).

Fig. 2. Close-up of the head system used for localization and ground-truth
(head, camera, reflective markers)

For the visual localization, we tested three state of the art
monocular visual odometry algorithms: SVO 2.0 [29], ORB-
SLAM2 [30] and DSO [31], which we treated as black boxes,
and will be briefly explained in the next section. We fed the
image stream and the intrinsic parameters of the camera,
and extracted the estimated position and orientation of the
camera.

We also logged acceleration and angular velocity data at
200 Hz from one IMU mounted on the camera itself, as
well as force and torque data from sensors placed on both
feet, also at 200 Hz. This data was processed and analyzed
to look for possible differences between different walking
speeds (Figs. 4, 5).

B. Visual Odometry Algorithms

Visual odometry algorithms are normally classified based
on two properties. Depending on the information they use
from the images, the algorithms can be Direct or Indirect.
Direct methods use pixel intensity information, making them
fast, but prone to errors caused by changes in lighting

World
Time 0

Time t

Cinit
Ct 

(gt) TW→Ct(gt) TW→Cinit

(vo) TCinit→Ct

Fig. 3. Used coordinate frames.

Fig. 4. RMS of the data from the accelerometer and gyroscope of the IMU
mounted on the camera for x (red), y (green) and z (blue) (right), and their
norm, with a fitted quadratic curve (left).

conditions. Indirect methods pre-process the raw sensor data,
extracting features such as corners, edges, or more sophisti-
cated feature descriptors, which makes them more robust to
lighting changes, but computationally heavier because of the
feature calculation process. On the other hand, depending
on the amount of pixels used from the input images, the
algorithms are classified as Dense or Sparse. Sparse methods
use and reconstruct only a selected set of independent points,
whereas Dense methods attempt to use and reconstruct all
pixels in the 2D image domain.

For this paper, we decided to test Sparse methods, as we
are focusing on localization and do not need to reconstruct
a map from the visual input. Therefore, we selected a Direct
and Sparse method (DSO) [31], a Semi-Direct and Sparse



Fig. 5. RMS of the data from the F/T sensors on the robot’s feet.

Fig. 6. Trajectory tracking error, obtained with the motion capture system,
w.r.t. the reference motion trajectory.

method (SVO 2.0) [29] and an Indirect and Sparse method
(ORB-SLAM2) [30].

C. Scale Extraction

To solve the scale ambiguity problem of monocular lo-
calization algorithms, for each VO algorithm and for each
experiment we calculated the scale from the estimated trav-
eled distance of the camera after the first step and from the
reference step length. Assuming a flat floor and no slipping
on the first step:

λest =
(ref)dfirst step
(vo)dfirst step

(1)

where λest is the estimated scaling factor, and dfirst step
is the Euclidean distance between the initial position of
the camera system and its position after the first step. We
also chose this method as it is one of the hypothesized

ways in which humans try to calculate traveled distances
while walking, using substratal idiothetic cues, i.e., based on
information about movement with respect to the ground or
to inertial space [32].

For comparison, we also used the scale calculated using
the actual traveled distance obtained from the ground truth:

λreal =
(gt)dfirst step
(vo)dfirst step

(2)

to examine how close was with respect to the estimated scale
with respect to the real one.

IV. DATA ANALYSIS

For the analysis of the localization performance of the dif-
ferent VO algorithms, we focused on the absolute trajectory
error (ATE), and the relative pose error (RPE) [33]. Both are
calculated after aligning the trajectories using the method
of Horn [34], which finds the rigid-body transformation
corresponding to the least-squares solution that maps the
estimated trajectory onto the ground truth trajectory in closed
form.

The ATE is used to asses the global consistency of the
estimated trajectory, by comparing the absolute distances
between the estimated and the ground truth trajectories, after
both trajectories have been aligned (Fig. 7).

ATEt =
(gt)T−1

W→Ct

(vo)TW→Ct (3)

We then evaluated the root mean squared error over all
time stamps of the translational components:

RMSE(ATEt) =

(
1

n

n∑
i=1

‖ATEi‖2
) 1

2

(4)

On the other hand, the RPE is used to asses the drift
between the estimated and ground truth trajectories. We set
the time interval ∆ to 10 [ms], assuming that in this time
interval the motion is linear (Fig. 8).

RPEt =
(gt)T−1

Ct→Ct+∆

(vo)TCt→Ct+∆
(5)

Similar to the ATE, we evaluate the root mean squared
error over all time stamps, with m = n−∆:

RMSE(RPEt) =

(
1

m

m∑
i=1

‖RPEi‖2
) 1

2

(6)

A. Discussion

The results from the walking experiments showed an
interesting relationship between the visual localization ac-
curacy and the robot’s step lengths used to cover the 1.5
m trajectory. The estimation from SVO 2.0 resulted to be
the one with the least error, followed by ORB-SLAM2 and
DSO. Interestingly, DSO seems to be affected the most by
accelerations, possibly vibrations on the camera caused by
the walking motions. As the step length increases, both
the acceleration and the ATE of DSO increase (Fig. 4, 7).
However, in Fig. 7 (top) the error for a step length of 10 cm



Fig. 7. ATE versus step length, for DSO, SVO 2.0 and ORB-SLAM2 for
λest (top) and λreal (bottom). Red dots with blue vertical error bars denote
the average and standard deviations for each step length, while the red
dashed lines are the fitted quadratic curves for the averages. Fitted quadratic
curves were calculated using the polyfit function of MATLAB R©.

seemed like an outlier, which is also true for SVO 2.0. This
coincides with the fact that with the same step length, forces
in the vertical axis, as well as torques around x and y are
the biggest (Fig. 5). This happens normally when there are
early contacts of the feet with the ground or slippage, which
makes the motions unstable. Also, looking at the trajectory
execution error (i.e. the difference between the reference
trajectory to reach the target 1.5 m away and the actual
final position measured by the motion capture system), the
error at a step length of 10 [cm] is the biggest (Fig. 6).
Therefore, using λest for a step length of 10 cm would not
be adequate, since the actual step length can be far from the
actual step length. Changing the scale to λreal highlighted
the trend of the relationship between the performance of each
VO algorithm and step length (Fig. 7, bottom). From this
figure, we clearly see how DSO’s error increases with step
length, which besides coinciding with the accelerometer data,
also coincides with an increase of contact forces on the feet
in the x axis (Fig. 5).

In the case of ORB-SLAM2, the ATE decreases as the step
length increases (Fig. 7). This could point that this algorithm,
without optimizations or loop closures, is the most affected
by drift. With smaller step lengths, the time to travel the
reference distance is longer, which would then increase the
effects of drift, whereas with longer step lengths the time is
less, and so would be the drift, causing less estimation errors
in the end. Finally, the trend of SVO 2.0 could be explained
by the fact that, as it is a semi-direct algorithm, both effects
from vibrations and drift are combining together.

Fig. 8. Relative error of the different VO algorithms w.r.t. the ground truth.
SVO 2.0 (red), ORB-SLAM” (green), DSO (blue).

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We performed a set of experiments with a biped humanoid
robot walking with different step length values, in order to
find out whether this parameter would affect the performance
of VO algorithms. As we are focusing on localization and not
mapping algorithms, we tested a Direct (DSO), a Semi-direct
(SVO2.0) and an Indirect (ORB-SLAM2) VO algorithm.
Increasing the step length of the walking gaits showed
an increase on the acceleration measurements, most likely
because faster walking introduced more vibrations on the
robot, which affected the performance of DSO. Also, we
observed worse localization performances for SVO 2.0 and
ORB-SLAM2 the shorter the step lengths, i.e., the slower
the walking, and as it took more time to get to the goal,
the effect of drift on the localization estimates was also
increased. From the above, we observe that to minimize
the effect of drift, we need to walk faster, but this in
turn produces more vibrations, which negatively affect the
localization performance. Therefore, this paper shows that
footstep planning could be used in an active localization
system to improve the performance of VO algorithms.

B. Future Works

As we observed a correlation between walking step length
and visual localization performance, we are planning to
include these performance curves as cost functions within
a footstep planner such as to minimize localization error.

Regarding the calculation of the scale for monocular VO
algorithms, in this paper we showed that obtaining it from
an assumed step length leads to low performance. We are
planning to explore ways of extracting the scale before
starting the motion and/or during the motion itself, as is the
case for some insects that present peering behaviors, or birds
that use head-bobbing [35]. Experiments in environments



with more or less texture should also be carried out in order
to investigate the influence of visual texture on the visual
localization performance.

Also, we are interested in exploring how the localization
performance is influenced by other gait parameters such as
stepping time, i.e. the duration of single and double support
phases. We are planning to explore as well the influence of
gait in other (non-visual or fusion) localization algorithms.
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