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Abstract— Motivated by experiments showing that humans’
localization performance changes with walking parameters, in
this paper we explore the effects of walking gait on biped
humanoid localization. We focus on walking style (normal and
gallop) and gait symmetry (one side slower), and we assess the
performance of visual odometry (VO) and kinematic odometry
algorithms for the robot’s localization. Changing the walking
style from normal to gallop slightly improved the performance
of the visual localization, which was related to a reduction
in torques on the feet. Changing the gait temporal symmetry
worsened the performance of the visual algorithms, which
according to an analysis of inertial data, is related to an
increase of mechanical vibrations and camera rotations. Both
changes of gait style and symmetry decreased the performance
of the kinematic localization, caused by the increase of vertical
ground reaction forces, to which kinematic odometry is very
sensitive. These observations support our claim that gait and
footstep planning could be used to improve the performance of
localization algorithms in the future.

Index Terms - Localization, ego-motion, visual odometry,
kinematic odometry, humanoid robot, WABIAN-2R

I. INTRODUCTION

The ability to self-localize in the environment is a crucial
requirement for mobile robots. For humanoid robots, the abil-
ity to self-localize in the environment could greatly help them
to become more useful in our daily life. One common way
for the robot to self-localize is through odometry algorithms,
i.e., the estimation of the robot’s change in position through
the use of motion sensors, such as cameras, inertial mea-
surement units (IMU), motor encoders, etc. These sensors
can be used independently, as is the case of visual odometry
(VO) algorithms, or their information can be combined to
get better estimates, using algorithms based on probabilistic
approaches, for instance.

Improving self-localization performance is a problem that
can be tackled not only at the level of sensing and filtering
but also motion planning. One approach to achieve this is
to change the path a robot takes to a goal or the goals
themselves in a way that optimizes said performance. This is
called active localization, which refers to the act of partially
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or fully controlling the motions of the robot to minimize
the uncertainty and increase the efficiency and robustness of
the estimation of its current pose [1], [2]. Humanoid robots
could potentially use this approach also by changing inter-
limb coordination or gait parameters while keeping the same
base trajectory, to affect the camera motion and improve the
robot’s localization performance.

The effect of walking style on self-localization systems
has been analyzed in humans [3], [4], [5], [6], [7]. Humans
modify their walking speed to improve their path integration
with closed eyes [3]. However, current humanoid robot
walking controllers and localization systems are built in ways
fundamentally different from that of biological systems, and
are not built with the purpose of achieving similar localiza-
tion performances (i.e. similar relationship between walking
speed and localization accuracy). Moreover, previous work
with hexapod robots has found inconclusive and irregular
variation of SLAM performance with gait parameters [8].

With the above in mind, the contribution of this paper
is to answer the following questions regarding localization
systems for biped humanoid robots:

o Does performance of such systems depend consistently

and non-trivially with humanoid gait?

o What effects do different walking styles have on the

performance of such systems?

The approach in this paper is data-driven, i.e., we do
not try to predict localization performance from simplified
mechanical, control, sensor, or environment models. Instead,
we directly measure localization performance of the whole
system, by using ground-truth data from motion capture
on several experiments while varying the robot’s walking
gait parameters. For this paper, we focus on gait style and
symmetry, which are parameters that could potentially be
used in the footstep planning phase of humanoid robot
locomotion planning [9].

We describe this data-based approach and the data analysis
in Section III. In Section IV we present the relationships
found between localization performance for two different
VO algorithms and one kinematic odometry algorithm and
the mentioned gait parameters in our robotic platform. Also
we discuss the possible explanations for the observed rela-
tionships quantitatively based on measurements of stepping
impacts and inertial data. Finally we present our conclusions
and future works in Section V.

II. RELATED WORK

Self-localization for humanoid robots has been widely
researched. In the case of VO algorithms, Stasse et al.



[10] proposed a real-time monocular Visual Simultaneous
Localization and Mapping (VSLAM) algorithm taking into
account robot kinematics from the walking pattern generator.
In [11], an IMU based state estimation for a stereo based 3D
SLAM is proposed, using measurements from the stereo VO
and robot kinematics as updates for the Extended Kalman
Filter (EKF).

For kinematics based approaches, Xinjilefu et al. [12]
propose a decoupled estimation to reduce the computational
cost but sacrificing some accuracy. Also, in [13], a bipedal
robot state estimator is proposed, based on another originally
designed for a quadruped robot [14]. These estimators make
the filter update based on feet measurements. However
none of the above analyzed the performance of their self-
localization algorithms with walking parameters.

Regarding active localization for legged robots, [8] as-
sessed the localization accuracy of a hexapod robot in dif-
ferent types of terrain changing the robot’s gait accordingly,
using an RGB-D sensor.

More specifically for biped humanoid robots, active visual
localization has been researched from different perspectives,
as active localization to improve the interactions of the robot
with its environment for object manipulation [15], an active
vision system to estimate the location of objects while walk-
ing [16], or a task-oriented active vision system for a vision-
guided bipedal walking [17]. None of the above assessed
the effect of the walking motion itself on the performance
of the robot’s localization, nor used this information to plan
or modify the walking gait of the robot to obtain a better
localization estimate.

From the biological point of view, humans plan their walk-
ing gait ahead in many situations, such as to keep stability
in difficult situations like slippery terrains [5]. Humans also
change gait parameters when there are problems with the
sensory inputs, by decreasing walking speed or having a
more backward leaning trunk posture when visual distur-
bances arise [6]. There is also evidence pointing out that
modifying the walking speed makes humans underestimate
distances when walking at slower speeds and overestimate
at faster speeds [3], as well as walking cadence affecting
the performance of path integration, achieving the best
performance at about 2 Hz [7]. Also, the human odometer
is sensitive to asymmetries in walking style [4].

III. METHODOLOGY

As explained in Section I, in this paper we focus on the
effects of walking style and walking symmetry on local-
ization performance. We generated three different walking
patterns, one normal walking pattern, one pattern we will
call “gallop”, and one we will call “slow”, which will be
described in the following Section. For all the patterns, the
total walking distance was fixed to 1.5 m on a straight line,
and the time to traverse that distance was kept inside the
interval between 13.5 and 14.5 seconds. The step width was
maintained constant at 0.08 m. Five runs were performed for
each pattern. All patterns were executed on the robot by joint
position control without any state estimation (i.e. assuming
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Fig. 1. Stepping order for the normal and slow (top), and gallop (bottom)

walking patterns and approximate zero moment point (ZMP) reference (blue
dashed lines).

the reference trajectory of the base was executed perfectly).
The motion capture and robot’s joints, force, IMU and image
data were stored and later analyzed.

A. Walking Gaits

As mentioned above, three walking patterns were tested:

e« Normal: A walking pattern with a step length of
0.125 m and a reference walking cadence of 0.96 s/step,
0.06 seconds for double support phase and 0.9 seconds
for single support phase.

o Gallop: A walking pattern that followed the rule ‘Step
forward with the right foot, then bring the left foot into
alignment with the right foot, pause and repeat’, as done
in [4]. The step length was fixed to 0.25 m and the
reference walking cadence was fixed to 0.96 s/step, 0.06
seconds for double support phase and 0.9 seconds for
single support phase. (Fig. 1, bottom).

e Slow: A Normal walking pattern with a step length of
0.2 m, but a different reference walking cadence for
each foot, one of 0.96 s/step (0.06 seconds for double
support phase and 0.9 seconds for single support phase),
and the other taking twice the time, i.e., 1.92 s/step (0.12
seconds for double support phase and 1.8 seconds for
single support phase).

B. System Overview

For the experiments in this paper we used the biped
humanoid robot WABIAN-2R [18] (Fig. 2), a 33 Degrees of
Freedom (DoF) bipedal humanoid robot. For the visual input,
we used a Matrix Vision mvBlueCOUGAR-X, a global shut-
ter monocular camera, together with a low distortion wide
angle lens of focal length 1.28 mm, a Field of View (FOV)
of 125 deg and a distortion of 3%. The stream of images
was set to 117 Hz, and the camera was mounted on the head
of the robot (Fig. 3). For the ground truth measurements, a
motion capture system OptiTrack V120:Trio at 120 fps was
used, placing the photo-reflective markers on the camera to
obtain the actual trajectory.

The different reference frames and transformations used
for the experiments can be seen on Fig. 4. For the visual
localization we use two main reference frames, the World
frame, and C}, the frame of the camera system at time
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Fig. 2. Robotic platform WABIAN-2R (left) and DoF configuration (right).

Fig. 3. Close-up of the head system used for localization and ground-truth
(head, camera, reflective markers)

t. Also, following the notation used in [19], we define
(ESt)TAtiH B,. as the transformation of frame B at time ¢
relative to frajlme A at time t;, calculated with the estimator
est. The VO system tracks the motion of the camera system
relative to its initial frame, (" T¢, ., .c,.

For the kinematic localization we use three main reference
frames, the World frame, Cy, and F}, the frame of the contact
foot at time ¢. The kinematic odometry estimates the motion
of the robot’s head relative to the contact foot frame at each
time stamp, *™)Tp ¢, .

For both cases, the motion capture system tracks the
camera system in the world frame, (gt)TW_)Ct.

For the robot’s localization we used two visual odometry
algorithms and one kinematic odometry algorithm. We tested
a semi-direct VO algorithm, SVO 2.0 [20], and an indirect
VO algorithm, ORB-SLAM2 [21], which we treated as a
black boxes with default parameters. We fed the image
stream and the intrinsic parameters of the camera, and ex-
tracted the estimated position and orientation of the camera.
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Fig. 4. Used coordinate frames.

For the kinematic odometry, we used an Extended Kalman
Filter based approach for humanoid robots proposed in [22].

We also logged acceleration and angular velocity data at
200 Hz from one IMU mounted on the camera itself, as well
as force and torque data from sensors placed on both feet,
also at 200 Hz. This data was processed and analyzed to
look for possible differences between different walking style
and symmetry conditions. (Figs. 5, 6).

C. Scale Extraction

To solve the scale ambiguity problem of monocular local-
ization algorithms, we calculated the scale by comparing the
estimated traveled distance of the camera after the first step,
with the traveled distance obtained from the ground truth
after the first step:

(9t) dfirst step

A= wo) (1)

d first step

where A is the obtained scaling factor, and dyirst step 1S
the Euclidean distance between the initial position of the
camera system and its position after the first step. We chose
this method as it is one of the hypothesized ways in which
humans try to calculate traveled distances while walking,
using substratal idiothetic cues, i.e., based on information
about movement with respect to the ground or to inertial
space [23].

IV. DATA ANALYSIS

For the analysis of the localization performance using
different gait styles, we focused on the absolute trajectory
error (ATE), and the relative pose error (RPE) [24]. Both
are calculated after aligning the trajectories using the method
of Horn [25], which finds the rigid-body transformation
corresponding to the least-squares solution that maps the
estimated trajectory onto the ground truth trajectory in closed
form.

The ATE is used to asses the global consistency of the
estimated trajectory, by comparing the absolute distances
between the estimated and the ground truth trajectories, after
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Fig. 6. RMS of the data from the F/T sensors on the robot’s feet for

normal (left), gallop (center) and slow (right). Markers with vertical error
bars denote the average and standard deviations.

both trajectories have been aligned (Fig. 7). We evaluated
the root mean squared error over all time stamps of the
translational components:

1 « _ 2
RMSE(ATE,) = (n§ H<9t>TWgCi oIy e
=1

(2

On the other hand, the RPE is used to asses the drift
between the estimated and ground truth trajectories. We set
the time interval A to 10 [ms], assuming that in this time
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RMS of the data from the accelerometer and gyroscope of the IMU mounted on the camera for normal (left), gallop (center) and slow (right).
Markers with vertical error bars denote the average and standard deviations.

interval the motion is linear (Fig. 8). Similarly to the ATE,
we evaluate the root mean squared error over all time stamps,
with m =n — A:

RPE, = (gt)TE’t,l—>Ct+A (UO)TCt%CHA 3)
RMSE(RPE,) = e i |RPE;||” ’ (4)
t) — m et 7

A. Discussion

For both visual odometry algorithms, changing the walk-
ing style from normal to gallop slightly decreased the local-
ization error (Fig. 7). This could be explained by the fact
that both SVO 2.0 and ORB-SLAM?2 show less localization
error for a step length of 0.25 m, i.e., the step length used
for “gallop”, than for 0.125 m, which is the one used for
the normal walking gait (Fig. 9). Also, the moments around
the y and z axes are smaller for “gallop” than for “normal”
(Fig. 6), which could be another reason for the improvement
on the localization performance.

On the other hand, changing from a normal to an asym-
metrical gait (“slow” gait) increased both the error as well as
the variance of the visual localization. From Fig. 9, and given
that the step length for “slow” was 0.2 m, we could expect
the error for SVO 2.0 to be similar, and for ORB-SLAM?2 to
be smaller. However, ORB-SLAM?2 is strongly affected by
rotations, and in this case we can see high angular velocities
for “slow” in the y and z axes (Fig. 5, lower row). In the
case of SVO 2.0, the increase of localization errors could
be caused by the high accelerations in the x axis, as well as
the high variance of the accelerations on the z axis (Fig. 5,
upper row).
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It is interesting to note, however, that the moments around
all the axes were the smallest for this asymmetrical gait (Fig.
6, lower row), but it did not seem to improve the performance
of any localization algorithm.

For the kinematic odometry algorithm, changing both the
style and symmetry increased the localization error slightly.
This could be explained by the fact that both “gallop” and
“slow” suffered more reaction forces on the vertical axis
than normal walking. This could point to bigger impacts
while walking, which affect the readings from the encoders
as well as the monitoring of the contact foot switching,
which is crucial for the kinematic odometry. It is also worth
mentioning that the kinematic algorithm was the one with
the least drift, as can be seen on Fig. 8, where the RPE is
almost negligible compared to those of the visual algorithms.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We performed a set of experiments with a biped humanoid
robot for different walking styles and gait symmetry condi-
tions, in order to find out whether these parameters would af-
fect the performance of visual and/or kinematic localization.
We tested a Semi-direct (SV0O2.0) and an indirect (ORB-
SLAM?2) VO algorithms, as well as a kinematic odometry
algorithm [22].

Using a gallop gait decreased the localization error for
visual localization, which the data shows to be related to a
decrease in the moments around y and z, caused either by
the walking style itself, or because of the change in step
length.

Eliminating the temporal symmetry of the walking gait
increased the error of the visual localization, as well as its
variance, even when from the step length point of view
the error should have either remained or improved. For
ORB-SLAM?2 rotations could have affected the performance,



whereas for SVO 2.0 accelerations, most likely produced by
vibrations during walking, affected its performance.

For the kinematic localization, both the gallop gait and
the asymmetrical gait affected negatively the performance.
Ground reaction forces on the vertical axis affected the
most, as the kinematic odometry algorithm relies heavily on
monitoring the which foot is in contact with the ground,
which is the used to calculate the traveled distance from the
kinematic chain.

B. Future Works

As we observed a correlation between walking style and
localization performance, we are planning to include these
localization performance curves as cost functions within a
footstep planner [9] such as to minimize localization error.

Regarding gait symmetry, in this work we focused on
temporal asymmetry, but we are planning to explore other
kinds of asymmetries, such as posture asymmetry.

Also, we are interested in exploring how the localization
performance is influenced by other gait parameters such as
stepping time, i.e. the duration of single and double support
phases.
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