
Dimensions of Diversity in Robot Datasets:
Literature Analysis and Recommendations

Wenxi Wu, Michelle Nwachukwu, Atmadeep Ghoshal, Madeleine Waller, Martim Brandão

Abstract— Datasets are essential for building robotic policies
that can generalize on new tasks. Recent studies show that a
lack of diversity in data can lead to performance disparities
and discrimination against underrepresented groups, therefore
making diversity an important requirement of robot datasets.
While many authors claim their datasets are ‘diverse’ there
is currently a lack of understanding of what diversity means
in the context of robot datasets. Therefore, in this paper we
conduct a systematic analysis of literature on robot manipulation
and collaboration datasets to investigate what is meant by
‘diversity’ when it is claimed by authors of the datasets. We
identify five dimensions of diversity in the context of robot
manipulation and collaboration: object, task, environment,
platform, and human diversity. Then, we identify various
limitations with current practices related to diversity, and offer
several recommendations: creating datasets with clear definitions
and scales of diversity, with greater cultural representation
including from Global South cultures, the inclusion of human
participants with varying motion characteristics and better
reporting of human characteristics.

I. INTRODUCTION

Robot datasets play a vital role in training, validating, and
testing the behavior of robotic systems. While large-scale
datasets enhance the capability of robot policies to generalize
on different tasks, dataset developers face a complex problem
as environments and tasks can present in a seemingly
unlimited number of ways. Thus, creating diverse robot
datasets is an important challenge. Dataset developers often
describe their datasets as ‘diverse’, but this term has come
to mean different things, e.g., including a range of tasks in
datasets to enhance generalization ability, or including diverse
human demonstrators in the dataset curation process. Diversity
is often deployed as a buzzword that has no clear definition
or verifiable metric. In this paper, we identify the different
dimensions of diversity present in robot datasets, specifically
those used for manipulation and collaboration with humans.
We investigate what authors of robot datasets mean when
they claim a dataset is ‘diverse’, we show how definitions
are currently lacking, and make several recommendations for
better practices. We conduct this analysis on datasets of robot
manipulation and collaboration, looking at datasets published
in the past five years in prominent robotics conferences.

II. RELATED WORK

A. Robot datasets

The development of robot learning approaches has tradi-
tionally relied on small datasets that contain one or a few
tasks [1], [2], [3]. Some datasets cover multiple tasks [4],
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[5], but their utility is limited by the fact that the data is
collected in single specific environments, restricting cross-
environment generalization [6]. In recent years, researchers
have aimed to address this generalizability issue by creating
robot datasets consisting of multi-task and multi-domain robot
data. For example, DROID [7] contains 76,000 demonstration
trajectories collected across 564 scenes and 86 tasks in
different setups. In this dataset, industrial office scenes are
the most featured with more than 200 scenes. The authors
report the dataset is diverse in terms of tasks, objects, scenes,
viewpoints and interaction locations. RH20T [8] contains over
140 tasks with multi-modal input including visual, audio, and
tactile information. The data is collected on robots, tasks,
modalities and multiple sets of robot hardware. BridgeV2 [6]
has data collected in 24 scenes. These datasets expand the
range and quantity of open-source robotic data in multiple
tasks and domains, and could be considered more diverse as
they include more tasks, scenes and setups. However, diversity
can be defined differently and clarifying these definitions for
robot datasets has not been fully explored.

B. Diversity in ML

Diversity in datasets used for machine learning (ML)
has been more widely explored [9]. Datasets often reflect
political and social states of the world which can lead to
bias in outcomes of trained models, potentially causing
harmful effects if these outcomes are used to influence
individual decisions or policies [10], [11]. For example, a
hiring tool was shown to be biased against women due to
a lack of diversity in the training dataset which reflected
the previously hired individuals who were predominately
male [12]. Existing research has focused on the difficult task
of defining and quantifying diversity and related concepts for
tabular, text, or image datasets, but there has been a lack of
consensus on these definitions. Various notions of diversity
have been proposed [13], including variety in dataset content
(e.g., background elements in images [14], representation of
languages in text [15]), the diversity of data sources (e.g.,
different web sources [16]), variation in topic areas (e.g.,
artistic styles of images [17], disciplines that text is taken
from [18]), representation of human subjects (e.g., proportions
of individuals with protected characteristics in images [19],
descriptions of individuals in text [20]), and the diversity of
dataset annotator backgrounds [21].

Measures quantifying these notions of diversity are difficult
to define [22]. Some works focus on defining diversity with
respect to the representation of human subjects [23], [24], e.g.,
ensuring a balance of individuals with protected characteristics
in the training data. A lack of representation of diverse human



TABLE I: Presence of Different Dimensions of Diversity in
Robot Manipulation & Collaboration Datasets 2020 - 2024:
object, task, environment, platform and human.

Obj Task Env Platf Human
ARMBenchm[30] ✓
RT20H m[31] ✓ ✓ ✓ ✓ ?
Gaze Attentionm[32] ✓
TransCGm[33] ✓
CALVINm [34] ✓
Open X-Embodimentm[35] ✓ ✓ ✓ ✓ ?
PriMA-Carec [36] ✓ ✓
Throw&catchc,m [37] ✓ ✓
TRansPosem [38] ✓ ✓
Grasp-Anythingm[39] ✓
Google Scanned Objectsm[40] ✓
ACRONYMm [41] ✓
Folding Demonstrationm[42] ✓ ?

subjects can lead performance disparities on marginalized
groups of people that are less seen in the dataset resulting in
downstream harms [25], but these concerns are less frequently
the focus of diverse dataset creation [13].

C. Diversity in HCI and HRI

Similarly to ML datasets, a lack of diversity has been found
in Human-Computer Interaction (HCI) and Human-Robot
Interaction (HRI) datasets [26], [27]. Creating datasets for
HCI and HRI particularly often involves human participants
interacting with computers or robots. Who these participants
are influences the dataset and thus any system that uses
it, leading also to issues of power [28]. One study finds
that there is an over-representation of men in research
participants in HRI and that it is not common practice
to report the demographics of the human participants [29].
Another demonstrates there is a bias in the human participants
selected for user studies towards participants that are “Western,
Educated, Industrial, Rich and Democratic” [27]. These papers
focus on the demographics of human participants, which
supports our discussions and recommendations. However, our
paper differs by focusing on identifying the dimensions of
diversity in robot datasets and their limitations, specifically
in robot manipulation and collaboration datasets.

III. DIMENSIONS OF DIVERSITY IN ROBOT DATASETS

To investigate what is meant by ‘diversity’ when it is
claimed by authors of robot datasets, we conduct a systematic
literature analysis. We searched for papers presenting new
datasets in robot manipulation and human-robot collaboration,
with keywords ‘manipulation’ and ‘collaboration’, published
in the past five years (2020-2024) in well-established venues
(ICRA, IROS, RAL, IJRR, HRI, ROMAN). We selected
papers that, in the title or abstract, claimed their datasets
contain ‘diverse’ data, using the word ‘diversity’ or ‘diverse’.
We then extracted the definitions of diversity used and
identified five dimensions of diversity: diversity in objects,
tasks, environments, platforms, and humans.

Table I shows the datasets found and which dimensions
of diversity they reference. Out of the datasets found, 12
involve robot manipulation (noted with ‘m’ in the table), and
2 involve collaboration (noted with ‘c’).

A. Diversity in objects

From the survey result in Table I, object diversity is by
far the most common type of diversity definition mentioned
in papers that present robot manipulation and collaboration
datasets—every paper mentions object diversity. For example,
X-Embodiment [35] contains a range of objects such as furni-
ture, appliances, and utensils. The Throw&catch dataset [37]
includes a range of 52 objects, from rigid objects such as
cans, to soft objects like pillows. Transpose [38] contains
99 transparent objects spanning household items, laboratory
equipment and recyclable trash. The motivation to include this
type of diversity is to allow generalization across interaction
with multiple objects.

B. Diversity in tasks

While many datasets focus on a small number of different
tasks [43], [44], larger datasets with multiple tasks are emerg-
ing. RT20H [31] contains 147 tasks, such as watering plants,
slicing vegetables and wiping tables. X-embodiment [35]
pools datasets that include many tasks together, e.g., picking,
moving, placing, sliding etc. The motivation to include this
type of diversity in datasets is often to enable the trained robot
to learn different skills and adapt to more complex tasks, thus
improving its success rates [31]. It remains a challenge to
generate diverse task data as it requires abundant investment
into equipment and labour.

C. Diversity in environments

Many tasks in robot datasets involve robots interacting
with an environment. Some datasets include varied scenes for
robots to perform the same tasks on. Dataset developers
alter the texture and materials of the objects to create
variations in the environment, e.g., RT20H [31] include 50
table covers and task-irrelevant objects in the background to
create distractions. TransPose [38] creates different illumi-
nation in the environment for the transparent objects. The
variety of scenes contributes to the generalizability in unseen
environments [31].

D. Diversity in robots and platforms

Robot learning algorithms are not only sensitive to the
quality and quantity of demonstrations, but also depend
on the platform (robot and interface) used. Some robot
datasets include data generated using different robots and
data collection platforms. RT20H [31] contains data collected
from 4 different robot arms with grippers. RoboTurk [45] has
introduced a crowd-sourcing platform to collect trajectories
on mobile devices through teleoperation. RT-X [35], a high-
capacity model trained on X-Embodiment dataset, gives an
example of a policy trained on data from multiple platforms
to enhance the task capabilities. The motivation for datasets
to include this type of diversity is to obtain policies that work
across different platforms. Additionally, collecting data on
different robot platforms makes the dataset easier to apply
in other laboratories and therefore reduces the investment
into replicating the setup in the data when it is used in other
laboratories, making it more accessible to different areas and
inclusive for budget-sensitive institutions and regions [6].



E. Diversity of human participants
Many robot manipulation datasets involve human demon-

stration or annotation. Dataset PRIMA-Care [36] reports the
demographic information of the human demonstrators. Some
papers report the number of humans involved in data genera-
tion, but no information about their personal characteristics
(noted in the table with questionmark ‘?’). For example,
RT20T [31] reports the total number of demonstrators. For
the Throw&catch dataset [37], information is included about
the gender and age of the human subjects. The variety of
different ways tasks can be completed plays an important role
in shaping the learned policies for robots. As a result, the
diversity of human participants has the potential to influence
the performance and generalizability of robots. As we will
discuss next, current dataset are lacking on human diversity
and its reporting, for example related to hand dominance,
age, gender, disabilities, etc.

IV. DISCUSSION & RECOMMENDATIONS

From our literature analysis we found that, when authors
claim a robot dataset is ‘diverse’, they refer to either
object diversity, task diversity, environment diversity, platform
diversity, or diversity in human participants. Table I shows
the presence of these dimensions of diversity in different
robot manipulation and collaboration datasets. In this section,
we present five recommendations for future development and
reporting of robot datasets and discuss each one in relation
to the dimensions of diversity we have identified.

R1: Unambiguous indicator of diversity

Dataset curators should clearly state the definition of
diversity they use.

Our first recommendation R1 is based on our findings
from Section III. Throughout the papers surveyed, there is
a lack of clarity when defining diversity for the curation
of datasets. It is often not reported how diversity has been
defined and there is lack of information about the dataset
curation process that is necessary for others to evaluate it.
Claims of ‘diversity’ usually refer to the types of tasks
and sometimes the types of domains. This is only a small
subset of categories that the term could potentially cover. For
example, the quality of the demonstrated trajectories has a
great impact on learning outcomes because the demonstrations
can incorporate biases from the human operators. However,
the diversity of demonstrators is rarely discussed.

The unclear definition of diversity across many datasets
makes the indicator difficult to understand. For example,
dataset Mt-opt [4] and RH20T [8] both claim they have
proposed a dataset that contains diverse skills. However, Mt-
opt contains tasks of lifting and placing a range of objects
from a single type of robot model, while RH20T has data
collected from multiple robot models and have selected more
tasks from other benchmarks. The absence of indication
and measurement definition causes confusion and does not
help enhance diversity in datasets. In contrast, the curators
of dataset Throw&catch [37] explain in the paper that the

diversity of data refers to the objects and humans where the
category of objects and demographics of demonstrators are
reported in the paper.

R2: Scale of diversity

A metric or scale should be defined to be able to
evaluate and compare the diversity of the dataset,
according to the specified definition of diversity.

Based on similar motivation as R1, our second recommen-
dation R2 further highlights the need to explicitly specify how
diversity is measured. In addition to being precise with the
definition of diversity, the scale of diversity for the dimensions
in Table I (Object, Task, Environment, Platform and Human)
should also be reported along with new datasets. As previously
discussed, quantification of diversity can be difficult. As such,
we recommend that further work should be done to create a
unified standard scale for diversity across these dimensions.
This recommendation is inspired by the field of algorithmic
fairness, which employs standard metrics widely used to
evaluate and compare datasets [24]. A unified standard, even
as simple as a count of the variety of tasks completed in a
dataset, or counts of categories of tasks from an accepted
task taxonomy, would allow for datasets to be compared.
More diversity in a dataset does not necessarily constitute
better performance for a specific task, e.g., if a robot only
ever encounters a specific set of objects, there is no need to
include objects outside of that set. However, robot policies
trained on data with more diversity in tasks are likely to
have a better performance to generalize on different tasks
and unseen environments.

R3: Inclusion of culturally diverse scenes

There should be consideration into the inclusion of
scenes from countries that are considered part of the
Global South. There should be clear documentation of
socio-geographical context of the scenes included in
the datasets.

Our third recommendation R3 relates to improving di-
versity of environments and scenes. Current robot datasets
predominantly focus on constrained indoor environments such
as offices, kitchens, and living rooms. Public places with
more complicated dynamics and movements, like restaurants
and airports, are notably absent from these datasets. For
these environments, particularly kitchens, the tasks often
center around high-end appliances like air fryers and waffle
makers found primarily in affluent households [7]. Moreover,
these datasets largely represent environments from high-
income Western countries [7]. While common objects in
these scenes—such as toys, mugs, and hats—are not explicitly
Western-centric, they fail to capture the material culture of
non-urban households in Global South regions, some of which
already have high robot uptake, like India. This economic
and geographic bias is reflected in the selection of everyday
objects that presume a certain level of purchasing power. Prior



research in computer vision has documented similar Western-
centric biases in dataset curation [46], [47], highlighting how
this perpetuates data and algorithmic coloniality [48].

There is a focus on the West when it comes to dataset
curation, yet different cultures and regions have different
objects and layouts within homes and other environments.
For robot home working scenes, including environments that
reflect the living conditions of many regions, such as the
inclusion of countries that are considered part of the Global
South, should be pursued by dataset developers. Within the
Global South, since not all emerging economies are the
same, we believe that dataset developers need to factor in
the diversity needs prevailing at the regional levels. To give
just one example, this is especially important for countries
like India where there is a stark difference between the social
scenes in an urban domestic setting and a rural domestic
setting, given that a large majority of the Indian population
is concentrated in villages.

R4: Inclusion of human participants

Inclusion of human participants with various motion
characteristics (e.g. hand dominance, history of ampu-
tation, limited motion, conditions that affect mobility)
and from different demographics should be made a
priority.

Our fourth recommendation R4 focuses on the fact that
humans who interact with robots are likely to have different
characteristics and behavior preferences. These priorities
should be accounted for in the curation of any robot dataset
so that the robot can learn how to behave for different groups
of individuals. Some policies trained on certain types of
height, age and body types have the risk of performing
worse on other groups that are less seen in the datasets [49].
Participants with various physical attributes and abilities
can help robots learn from a wide variety of motions. A
dataset that contains demonstrated paths with various features
is specifically useful for robots that assist humans. When
demonstrators operate the robot to record the trajectory, their
characteristics are implicitly incorporated in the data collected.
For example, in human-robot interaction tasks, the features
of the users interacting with the robot play a significant role.
Most learning-from-demonstration algorithms assume that
there exists a single optimal policy, reward, or plan to be
learned [50]. However, people have different bodies, and
motion preferences, and there are therefore multiple solutions
to manipulation and human-robot collaboration task.

To train policies that are inclusive for all, different groups
of demonstrators should be considered in the data collection.
As previously stated, when human participants are involved,
dataset developers should also report their information and
demographics, especially when they claim the datasets are
generated with groups of ‘diverse’ users.

Motion characteristics vary depending on age, height, and
sex [51], [52], so including demonstrators from different
demographics should be taken into consideration. A range of
physical characteristics such as hand dominance, history of

amputation, limits in motion, or conditions that affect mobility
should also be included. We recommend that the inclusion of
people with various motion characteristics should be made
a priority but understand the difficulty in this, specifically
when trying to include significant amounts of older people,
younger people, and people of various physical abilities in
a dataset. Including data from underrepresented groups in
datasets should be encouraged. To train robots that work with
all groups, demonstrators with disabilities should be included
in the data collection processed and reported in the datasets.

R5: Documentation of participant information

Information of human participation should be docu-
mented, including their demographics, how they were
selected, and their training process [22].

As has been found throughout this research, there is often
missing information about the curation of new robot datasets.
Our fifth recommendation R5 pertains to the demographics
and information pertaining to human participants not being
specified. For example, grasping datasets [39], [40], [41],
which mainly focus one diversity as a range of objects
of different size and shape, generally do not provide de-
mographic information or details of the participants in the
dataset. This could lead to downstream problems, because
the characteristics of human participants used for training
grasping policies (e.g., hand dominance and disabilies) will
have an influence on the generated motions of the robot. For
example, the demographics of human participants involved
throughout the curation of the datasets is often missing. The
video dataset Folding Demonstration [42] contains 8.5 hours
of human demonstrations of clothes folding. The abstract
claims that the demonstrations are recorded with a diverse
set of people, but the information on these demonstrators is
missing. Similarly, RT20T [31] reports that the demonstrations
are performed by 19 humans to ensure diverse trajectories, but
the information on demographics and motion characteristics
of the demonstrators is not provided.

V. CONCLUSION
In this paper we conducted a systematic literature analysis

related to robot manipulation and human-robot collaboration
datasets, and identified five dimensions of dataset ‘diversity’.
We found that, when datasets are claimed to be ‘diverse’,
such diversity most often refers to the variety of objects seen
in the dataset, but can also refer to diversity in robot tasks,
environments, platforms and human participants. Often the
definition of diversity is ambiguous and implicit and it thus
is difficult to measure and compare to other datasets. We
proposed five recommendations to guide future research in
creating diverse robot datasets, related to definitions, metrics,
inclusion of cultural diversity, inclusion of human participants
with varied physical and demographic characteristics, and
better documentation practices.
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