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Abstract— Motion planning algorithms are a fundamental
component of robotic systems. Unfortunately, as shown by
recent literature, their lack of explainability makes it difficult
to understand and diagnose planning failures. The feasibility
of a motion planning problem depends heavily on the robot
model, which can be a major reason for failure. We propose
a method that automatically generates explanations of motion
planner failure based on robot design. When a planner is not
able to find a feasible solution to a problem, we compute a
minimum modification to the robot’s design that would enable
the robot to complete the task. This modification then serves
as an explanation of the type: “the planner could not solve
the problem because robot links X are not long enough”. We
demonstrate how this explanation conveys what the robot is
doing, why it fails, and how the failure could be recovered if the
robot had a different design. We evaluate our method through
a user study, which shows our explanations help users better
understand robot intent, cause of failure and recovery, compared
to other methods. Moreover, users were more satisfied with our
method’s explanations, and reported that they understood the
capabilities of the robot better after exposure to the explanations.

I. INTRODUCTION

Motion planning algorithms play a crucial role in au-
tonomous robotic systems, as they compute the trajectory for
robots to accomplish tasks such as manipulation and navi-
gation. However, these algorithms often lack interpretability
and explainability, often making it difficult to understand why
they fail to find solutions [1]. Understanding and diagnosing
the causes of failure can be difficult and requires expertise
and previous experience with robots. Automatically generated
explanations of failure can address this issue, aiding both
users and engineers in understanding why motion planners
fail, anticipating future failures, learning the capabilities and
limits of robots, or adapting robot design to prevent failure [1].

In this paper we propose a method that generates explana-
tions of motion planning failure based on robot design. Our
algorithm computes the minimum modification to the robot’s
design required to turn an infeasible problem into a feasible
one, and thus shows users what the current design lacks. Our
method simultaneously answers the questions “why did the
robot fail?” and “how should the robot have been designed to
avoid failure?”. Therefore, our proposed algorithm outputs an
explanation of the type “the planner failed to find a solution
to the problem because the upper arm of the robot is not long
enough”. This contrastive explanation can inform users of a
different robot design to contrast the failure to, which, as we
will show, helps users understand the capabilities and limits
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Robot: I cannot reach the goal 
because my arm is not long enough.
If the arm was extended as shown 
above, then I would have succeeded.
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Fig. 1: Illustration of our “robot design explanation” method.
The explanations show the minimum modification to the
design that turns an infeasible motion planning problem into a
success. When the motion planner fails, our method computes
increases in link lengths that make the problem feasible, and
uses them to compose an explanation as in the above example.

of the robot. Our proposed method works by finding the
minimum change to robot link lengths that makes a problem
feasible, leveraging a reformulation of the design optimization
problem as a normal trajectory optimization problem with
virtual pneumatic joints.

Our contributions are the following:
• We propose an algorithm that generates robot-design-

based explanations for motion planning failures, by
finding and visualizing the minimum change in robot
design required to recover from the failure;

• We show that our method’s explanations help users better
understand robot capabilities and the cause of failure,
and are perceived to be more actionable and satisfying
than two other types of explanations.

II. RELATED WORK

The explainability of robotics algorithms has recently
been a subject of research within the Explainable AI (XAI)



community [2], [3]. Algorithms for generating motion plan-
ning explanations, in particular, have recently been proposed
based on optimization methods [1], [4] and sampling-based
methods [5], [6]. Explaining failures is an important type of
explanation in motion planning [7], especially given that robot
motion planners have been shown to be brittle and can easily
fail to find a solution to simple problems [8]. Explanations of
failure have been shown to enhance performance in human-
robot-collaboration [9], human trust in robots [10], and failure
recovery [11].

Some research has recently been made on algorithms for
explaining failures caused by objects [12], [4]. However, here
we focus on explaining failures based on the robot’s design.
Moreover, our method is based on a contrastive explanation,
that contrasts the current design to a potential alternative.
Contrastiveness has been shown to be an important property
of explanations in AI [13] and robotics [7]. Such kind of
explanations have been proposed for robotics in the past, for
example in the path-planning explanation work of Brandao
et al. [14] (which computes alternative terrain label or cost
assignments in maps), or the autonomous driving commentary
system of Kuhn et al. [15] (which computes a potentially
contrastive text sentence to narrate vehicle behaviour, such as
“car is stopping because the traffic light is not green”). In this
paper, we focus on algorithms for generating explanations of
motion planner failure—when motion planners fail to find a
feasible solution to a problem.

To communicate robot motion planning failures to users,
Kwon et al. [16] proposed a method that generates motion that
mimics successful execution trajectories to help users identify
the source of the failure. Other work proposed repeating
failed behavior [17], and others have used large language
models to generate text conveying failure cause [18], [19].
One limitation of these methods is that they are not actionable
(i.e. do not tell the user what should be done to avoid failure),
which is another desirable property of explanations [20]. This
is a limitation that our method addresses by proposing explicit
changes to robot design that would make a problem feasible.
Explanations from our methods could be used, for example, by
robot designers or mechanical engineers in order to improve
future versions of the robot design.

Robot design optimization has been used to improve
metrics such as trajectory length, joint torques, manipulabil-
ity [21], [22], [23], [24], as well as sensor field-of-view [25].
While previous work has focused on design optimization
to improve torque performance [26], [27] and perception
algorithm performance [25], to the best of our knowledge,
these methods have not yet been applied to the generation of
explanations.

III. BACKGROUND

The objective of robot motion planning algorithms is to
generate a trajectory according to the degrees of freedom of a
robot, moving from an initial configuration q1 ∈ C to a target
configuration qN ∈ C, where N represents the number of
time steps. The robot’s configuration space C is typically RD,
where D denotes the number of degrees of freedom (e.g.,

joint angles). Alternatively, C can be a composite space, e.g.,
joint angle space combined with SE(3). The trajectory is
a sequence of waypoints ξ = {q1, . . . , qN}, and the motion
planning task can be formulated as an optimization problem:

minimize
ξ

f(ξ) (1)

s.t. gi(ξ) ≤ 0 i = 1, . . . , nineq

ϕec
i (ξ) ≤ 0 i = 1, . . . , nec

ϕsc
i (ξ) ≤ 0 i = 1, . . . , nsc

hi(ξ) = 0 i = 1, . . . , neq

where f represents the objective function to be optimized
(e.g., trajectory length and joint velocity). ϕec

i are inequality
constraints accounting for collisions between the robot and the
environment, while ϕsc

i denote robot self-collision constraints,
preventing potential collisions between different parts of
the robot. The terms gi correspond to other inequality
constraints on the trajectory, such as joint angle limits, and hi

represent equality constraints, which include conditions like
the initial configuration or the position of a robot joint or link.
These functions are scalar-valued. One conventional objective
function is trajectory velocity in configuration space:

f(ξ) =

N−1∑
i=1

∥qi+1 − qi∥2. (2)

Methods such as Sequential Quadratic Programming,
solved by optimization solvers, have been shown to obtain
locally-optimal solutions to this problem satisfying all the
constraints [28].

IV. METHOD

Let P be a motion planning problem that is infeasible, i.e.
for which no solution can be obtained. We assume there is a
design-related aspect of the robot that could be changed to
make the problem feasible, specifically the length of its links,
and which could be used as an explanation for the failure. For
example, the explanation “the problem is infeasible because
the robot’s upper arm is too short” highlights which limits
of the robot prevent it from completing the task. Building on
findings from seminal eXplainable Motion Planning work [1],
we assume this type of explanation could be useful either for
mechanical engineers considering re-designs, or for lay users
to better understand the robot’s limits.

Our goal is then to convert an infeasible motion planning
problem P into a feasible one P ′, by making minimum
changes to the lengths of the links of the robot. We
approximate the extension of the links’ lengths by inserting
virtual prismatic joints before each link in the kinematic
chain, for all links, and then finding a solution to the new
problem. In the context of this paper, therefore, the only
difference between P and P ′ is the robot model, which has
additional virtual joints in the latter case, and additional costs
and constraints that minimize the amount of change between
the two models.



Enabling Every Link to Extend: We insert a virtual
prismatic joint jv before every link whose parent is a revolute
joint. This extends the configuration space to X = C × RV

0+,
where V is the number of virtual pneumatic joints (i.e. virtual
links allowed to extend). In practice, we use a script that
takes a robot model in Unified Robotics Description Format
(URDF), searches for revolute joints, and then (since URDF
only allows link-joint connections) inserts a 0-length virtual
link and a virtual pneumatic joint after each revolute joint
found.

Optimization Problem: In order to compute a minimal
change to the robot design that makes a problem feasible,
we solve a new optimization problem. The new problem has
both ξ and ϑ ∈ RV N as variables, and is defined as follows:

minimize
ξ,ϑ

f(ξ) + f(θ) +

N∑
i=1

(αf1(ϑi) + βf2(ϑi)) (3)

s.t. gi(ξ) ≤ 0 i = 1, . . . , nineq

ϕec
i (ξ) ≤ 0 i = 1, . . . , nec

ϕsc
i (ξ) ≤ 0 i = 1, . . . , nsc

hi(ξ) = 0 i = 1, . . . , neq

ϕext(ϑ) = 0

where f is a velocity cost as before, f1 and f2 are costs
applied to virtual joints at each waypoint, and ϕext is a
constraint on virtual joints.

Extension Cost (f1): We use this cost to limit the overall
extension of links. Let j = [j1, ..., jV ] be the vector of virtual
joint values, then we set:

f1(j) =

V∑
k=1

jk, (4)

since jk ∈ R0+ are constrained to be non-negative by
definition.

Length Distribution Cost (f2): Most robots have re-
dundant degrees of freedom, and therefore it will often be
possible to make a problem feasible both by extending one
link by a large amount, or multiple links by a smaller amount.
We assume a larger extension on a single link produces
clearer explanations for observers, and therefore devise a cost
function which incentivizes solutions with fewer extended
virtual joints:

f2(j) = −max{j1, . . . , jV }. (5)

Since the max function is not differentiable, we use log-
sum-exp as an infinitely differentiable approximation

f2(j) = − log

(
V∑

k=1

ejk

)
. (6)

There is a trade-off between f1 and f2, and in our
experiments we prioritize f1 as it penalizes the overall
extension of the robot, and use f2 to decrease the number of
extended links. Therefore, we set α≫ β.

Last-timestep Extension Constraint: For visualization
purposes (i.e. when displaying the solution to this optimization

Algorithm 1: Robot Design Optimization
Data: trajectory initialization ξ, robot model r, start

configurations s, cost function f , penalty factor
k, penalty coefficient µ

1 for joint = 1,2, . . . maxJointNumber do
2 if joint is revolute then
3 r ← r ∪ insert virtual link and prismatic joint;

4 for penaltyIteration = 1, 2, . . . do
5 for optimizerIteration = 1, 2, . . . do
6 ξ, ϑ← SQP iteration to (3) ;
7 if converged then
8 break ;

9 if constraints satisfied then
10 return ξ, ϑ, r ;
11 else
12 k ← µ ∗ k;

problem as a form of explanation), one may choose to
show the link extension required to solve the problem in
all waypoints, or only at the last waypoint. We found last-
waypoint-only visualizations to work better as explanations. In
this setting, we construct a trajectory that attempts to reach the
goal with the original design as much as possible, and only at
the last waypoint will show necessary link extensions in case
they would be needed to solve the problem. To achieve this
effect, we set ϕext so as to make all virtual joint values equal to
zero at all waypoints except the last ϑi = 0, ∀i = 1, ..., N−1.
However, our approach is general and different constraints
could be set so as to display the explanation in various ways.

Computing an explanation: Pseudo-code summarizing
our method for computing an explanation of failure is shown
in Alg. 1. First, we compute a new robot model with additional
virtual links and joints, which allows the robot to extend its
links. Then, we solve the new problem using TrajOpt [28],
which is based on SQP and penalty iteration. The result is a
trajectory and new robot model, which will be shown to a user
to show design-related reasons for the planner’s failure in the
original problem. It will show a trajectory moving the robot as
close as possible to its goal, and then an extension of its links
required to make the problem feasible. An accompanying text
template can be filled to display an automated text message,
such as: “The planner failed because the links highlighted in
green are not long enough, as shown in this animation”. We
show examples in Fig. 3, which will be discussed in the next
section.

V. RESULTS

To evaluate the performance of our method, we first
generated a set of unsolvable problems for which an
explanation of failure needs to be computed. We used
MotionBenchMaker [29] to generate a set of unsolvable
problems in the kitchen and shelf scenarios from the library.
The problems represent a variety of failure modes: from out-



of-reach grasping locations to obstacle occlusions, as shown
in Fig. 2.

We compare our method (“robot design explanation”)
with two baselines:

• Robot incapability expression, a method proposed by
Kwon et al. [16], which relaxes goal constraints into
cost functions in order to display motion that makes as
much progress towards the goal as possible while re-
specting physical and collision constraints. Explanations
generated by this method are implicit in the generated
motion, though they can be accompanied with a textual
explanation of the form: “the planner failed because
the goal object was out of the robot’s reach. The video
shows how the robot tries its best to reach there but
fails”.

• Joint limit explanation, a method that checks whether a
problem becomes feasible once joint-limit constraints are
removed from the optimization problem. We propose this
method as a comparison where all the joint limits can
be removed to show users the effect of these limits.
Explanations take the following form: “The planner
failed because of limits on the angle/distance of joints
X. If these limits were lifted then the planner would
have solved the problem as shown in the following
animation”, and the method can display the computed
trajectory which does not respect joint limits.

We solve all optimization problems using TrajOpt [28]
with Gurobi as the solver. We use a constraint tolerance of
10−4, and consider that TrajOpt has converged when the
cost improvement between two iterations is lower than 10−4.
When no solution is found after 50 iterations, it is considered
a failure. Our experiments use α = 13 and β = 2.

A. Qualitative results

Fig. 3 shows examples of robot design explanations in 4
scenes in which the robot needs to grasp the red box on top
of the cupboard. The robot is unable to reach the goal pose
in its original design, and our explanations show which links
are responsible for the failure because they are too short. The
example images show green arrows on top of robot links that,
if modified to be longer, would enable the robot to complete
the task.

Fig. 4 compares the explanations generated by our method
and the two baseline methods for the same problem. Robot
incapability expression shows that the planner fails because
it cannot reach the target, by displaying motion of the robot
attempting to reach the goal as much as it can, but failing. The
joint-limit explanation shows that the planner fails because
the robot is constrained by limits on the torso joint, and
displays the motion that the robot would do if the torso’s
prismatic joint was not limited. Our robot design explanation,
on the other hand, shows that the planner fails because the
arm is not long enough, and displays how arm links could
be extended to complete this task. If the robot had been
designed that way, then it would have been able to complete
the task, as shown in Fig. 4 (c). Both the joint-limit and robot-
design explanations are “actionable”, a desirable property of

explanations [20], in the sense that they inform the user about
what could be done to make the problem feasible. However,
design explanations directly inform how the design can be
changed (i.e. by extending a link’s length), while joint-limit
explanations may be harder to implement and visualize as
they require thinking about changes in the mechanical design
that would allow to extend the joint limits.

Although each of the three explanation methods focuses on
a different aspect of the problem that is related to infeasibility,
they all generate faithful explanations, i.e. all explanations
are simultaneously true. The planner failed both because it
cannot reach the goal, because its joint limits keep it from
reaching the goal, and because the length of some of its links
is too short to be able to reach the goal. However, as we
will see in Section V-B, users may find some explanations
more or less satisfying, actionable, and leading to a better
understanding of robot’s capabilities than others.

Additionally, some explanations may also be applicable
to more problems than others. For example, for the Fetch
robot in our experiments, the joint-limit explanations extend
the configuration space by a much smaller amount than
design explanations. Although removing joint limits can
increase reachability on the vertical axis, as seen on Fig. 4(b),
reachability in other axes does not get enhanced. Design
explanations, on the other hand, allow links to extend and
thus for the robot to reach in locations that are further away.

B. User evaluation

We evaluated our explanations with a user study with
20 participants. 70% of the participants were holders of an
undergraduate degree in Computer Science or Engineering,
60% of the participants were female and 40% were male.
Participants saw 9 problems (6 on kitchen scenes and 3
on shelf scenes) where the robot fails to grasp the goal
object. For each problem participants saw the 3 different
explanations of failure in random order. Each explanation
showed both the template text and an animation (e.g. “the
planner failed because links X are not long enough, as shown
in the following animation”).

1) Effectiveness and actionability: In order to measure
whether explanations helped users understand the intention
of the robot (what it was trying to do), the cause of failure
(why it failed), and the recovery approach (what it would
take to make it succeed), we asked participants to rank the
following three statements using a 5-Likert scale (“strongly
disagree - 0 ” to “strongly agree - 5”):

1) It was clear that the robot failed because [cause]
2) It was easy to tell the robot was trying to do [goal]
3) It was clear how [changes] can be made to enable the

robot to succeed in this task.
The user responses from the explanation survey in Fig. 5
shows the average score of how much the participants agree or
disagree with the statement in Likert scale. We ran a Shapiro-
Wilk test to check the normality of the data, and found that
answers to the above questions were not normally distributed.
Therefore we used Wilcoxon rank-sum test, which is a non-
parametric statistical significance test. We use star symbols



Fig. 2: Examples of infeasible problems for the kitchen scene and shelf scene. The problems require the robot to move its
end-effector to the red box.

(a) kitchen scene (easy) (b) kitchen scene (hard)

(c) shelf (easy) (d) shelf (hard)

Fig. 3: Examples of robot design explanations in 4 tasks: a)
grasping an object in the dishwasher; b) in a cupboard with
a table in the middle; c) behind an obstacle on a shelf; d)
behind two obstacles on a shelf. Explanation: “The robot
failed to complete this task because the arm was not long
enough. The video shows how the arm can be re-designed
longer (the green arrow circled) to help it succeed.”.

in figures to indicate statistical significance using a post-hoc
Wilcoxon Signed Rank test with a Bonferroni correction due
to multiple comparisons between 3 conditions. The original
significance level is α = 0.05, which after a Bonferroni
correction leads to a significance level of αcorrected = .0167
(i.e. we use ∗ to indicate p < 1.67× 10−2 in Fig. 5 and 6).

Fig. 5 shows that the perception of clarity of the cause
of failure was not significantly different between the three
methods, even if our method has a slightly higher average.
Participants found that design explanations made it easier to
understand what the robot was trying to do (average 4.32,
“agree”), with a score significantly higher than incapability
expressions and joint-limit explanations (p = 0.0008 and
0.0012, respectively). We believe that the low result for
incapability expression originates from the end-effector not

(a) Robot incapability
expression [16].

(b) Joint-limit explanation.

(c) Robot design explanation
(ours)

Fig. 4: Examples of the three types of explanations considered.
(a) “Robot incapability expression” [16]: the robot tries to
lift its gripper as high as possible to approach the goal object
as an imitation of a successful trajectory; (b) “Joint-limit
explanation”: Because all limits on joints are removed, the
prismatic joint on the torso lifts it up to reach the object; (c)
“Robot design explanation” (ours): the robot arm is extended to
reach the goal, highlighting a design-based reason of failure.

reaching the goal object by design, which may make it hard to
understand what the robot was trying to do. The actionability
of our method (i.e. clarity of changes that can be made to
make the problem feasible), was also significantly higher
than both baselines (p = 0.0010 compared with incapability
expression and 0.0007 compared with joint-limit explanation).
We believe this is because the incapability expression method
does not indicate how to recover from the failure, while joint-
limit explanations can be hard to understand especially for
revolute joints (i.e. it is hard to tell whether and by how
much a joint limit is being extended).



It was clear that 
the robot failed 
because [cause].

It was easy to tell 
the robot was

trying to do [goal].

It was clear how 
changes can be made 

to enable the robot 
to succeed in this task.
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Fig. 5: User ratings of explanations on failure cause, robot
intention and recovery methods.
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Fig. 6: User ratings of satisfaction on the 3 types of
explanations.

2) Satisfaction: We also evaluated users’ satisfaction with
the explanations. To measure satisfaction we adapted the
XAI Explanation Satisfaction Scale questions proposed by
Hoffman et al. [30] to our setting. Concretely, we used the
“understanding”, “satisfying” and “sufficient details” questions
of the scale, formulated as follows:

1) From the explanation, I understand the capability of
the robot better.

2) The video is satisfying as an explanation for robot
failure.

3) The explanation video has sufficient details.

Fig. 6 shows the user satisfaction with the three types
of failure explanations. Overall, participants found robot
design explanations more satisfying than the other two. Our
explanations had higher scores than others on all questions.
First, the figure shows that the robot design explanation
helped users understand the capabilities of the robot better
than the other two methods (statistically significant with

p = 0.0020 and 0.0024). Second, users found our method
the most satisfying explanation among the three (statistically
significant with p = 0.012 and 0.0009). This is because the
robot design explanation shows the lack of robot capability
in an intuitive way. It contains information of the robot’s
intention, failure cause, and recovery method.

Finally, the amount of detail in the explanation was also
scored higher on average for our method. The difference
was statistically significant when comparing to incapability
expression (p = 0.0024) and joint-limit explanations (p =
0.0014). Although both the robot design and joint-limit
explanations show a similar amount of information (degree
of change that can be made), the type of changes is different
(joint-limit or link-length change).

Users could also write open-text feedback at the end of
the survey. Participants mentioned that sometimes it can be
difficult to know where the target object is, and whether the
robot has succeeded or failed to reach it. Therefore, we plan to
improve communication of the goal and constraint satisfaction
in future studies. Some also suggested that indicating the
grasping radius of the gripper could make it easier for them
to identify the capability to grasp the object when the gripper
is in the vicinity of the object.

VI. CONCLUSIONS

We proposed a new type of motion planning explanation
based on robot design. Our algorithm computes the minimum
change in robot design that converts a failed task into a
success. In particular we formulate the explanation problem as
a new trajectory optimization problem with virtual pneumatic
joints that allow robot links to “extend”, and cost functions
that promote small extensions over few links and an intuitive
visualization. We conducted a user study to compare our
explanation method with two baselines, one of them from
the recent literature. The results showed that our method
helped users better understand the robot’s capabilities and
cause of failure. Furthermore, users were more satisfied with
the explanations generated by our method than those from
the baselines.

One limitation of this work is that the extended links do not
have geometry, therefore potentially colliding with obstacles.
In the future, we would also like to extend the current
method to more complex design changes. As suggested
from user feedback on the survey, it is also important to
combine explainability methods with good communication
methods, such as verbal communication, visual indicators, or
interactive tools that can be used alongside explanations to
further improve the user understanding of robot behavior and
capabilities.
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