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Abstract— Despite the growing interest in the use of drone
fleets for delivery of food and parcels, the negative impact
of such technology is still poorly understood. In this paper
we investigate the impact of such fleets in terms of noise
pollution and environmental justice. We use simulation with
real population data to analyze the spatial distribution of noise,
and find that: 1) noise increases rapidly with fleet size; and 2)
drone fleets can produce noise hotspots that extend far beyond
warehouses or charging stations, at levels that lead to annoyance
and interference of human activities. This, we will show, leads
to concerns of fairness of noise distribution. We then propose
an algorithm that successfully balances the spatial distribution
of noise across the city, and discuss the limitations of such
purely technical approaches. We complement the work with a
discussion of environmental justice, showing how careless UAV
fleet development and regulation can lead to reinforcing well-
being deficiencies of poor and marginalized communities.

I. INTRODUCTION

There has been growing interest in using Unmanned Aerial
Vehicles (UAVs) for urban and rural delivery [1], [2]. UAVs
can carry low weights while avoiding traffic congestion
and they can deliver wherever costumers are, thus being
specially suited for parcel and food delivery. Examples of
such systems deployed by restaurants [1] and coffee shops
already exist, while Big Tech companies such as Uber and
Amazon have recently shown interest in launching food
delivery services using UAV fleets. While excitement for the
use of this technology is running high, the physical, social,
and environmental impact of such systems in large scales
is still poorly understood. Examples of potential issues and
concerns include privacy intrusion [3], safety [4], and noise
pollution [5]. Furthermore, and similarly to the introduction
of waste management systems, transport systems and other
urban technologies [6], [7], [8], these risks will not be evenly
distributed across deployment areas, but correlate with social,
economic, and demographic characteristics of those areas.

The goal of this paper is to estimate the impact of delivery
drone fleets on urban noise, as well to anticipate issues of
environmental justice [6]—in particular, issues of inequalities
in the spatial distribution of noise pollution by such fleets.
Intuitively, due to cities’ uneven distribution of population
and buying power, it is only natural that drop-off locations
(and thus fleet paths) are biased towards specific parts of the
city. Furthermore, distribution warehouses may make areas
where they are located less attractive to live and thus lower
property costs and attract specific socio-economic groups. In
the other direction, poor neighborhoods are also attractive
locations to build warehouses for similar reasons. Certain
social groups are then more likely to be affected by noise,
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raising concerns of economic justice similar to those seen in
waste management and transportation policies [6]. We focus
on drone noise as recent research has shown that it can cause
more disturbance than conventional airplane noise from a
psychological perspective [9], and it is a strong contributor
towards negative perception of drones [3]. We use realistic
drone noise models together with simulations on real map
and warehouse location data to estimate impact.

The contributions of the paper are the following:
• We develop and openly provide1 a UAV delivery-fleet

simulation system for impact assessment;
• We use drone noise models and simulation with real

map and warehouse location data to characterize noise
pollution and its inequalities in UAV delivery fleets;

• We propose a heuristic search-based planning algorithm
for UAV-fleets, FairNoise A* (FNA*), which prioritizes
traversing low-noise areas during search, thus reducing
noise hotspots and balancing noise impact across cities;

• We investigate the relationship between fairness and
efficiency in fairness-aware UAV-fleet planning.

II. RELATED WORK

A. UAV delivery issues

A large body of literature has been written on technical
and regulatory issues of UAV delivery [10], which has called
for more scientific evidence on the impact of such technology.
Potential impacts are many: from energy consumption, traffic
congestion, privacy intrusion and noise emission [5], to safety
[4], security and others [10].

B. UAV noise modelling and perceptions

In this paper we focus on the particular aspect of noise
impact. Based on noise measurement, frequency analysis, and
subjective experiments, recent work has shown that drone
noise can negatively impact mood and disturb communication
[11], can lead to annoyance in proportion to loudness and
sharpness [12], and it provokes more annoyance than ground
traffic noise [13] and airplane noise [9] at the same loudness
level. Other work has also studied residents’ reactions to the
use of UAVs in public places, showing the undesirability of
drones when they stay in public areas for a long time [3].

C. Technical methods for UAVs

Multiple algorithms have been proposed to improve the
efficiency of drone fleets, from path planners taking into
account drone traffic [14], to optimizers for deciding the
location of recharging stations [15]. Some methods have
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also been proposed to tackle UAV noise: through the use of
propeller control [16], hardware design [17] and path planning
methods as well [18], [4]. Regarding path planning methods,
examples of work that is most related to this paper include
pilot assistance systems that optimize landing trajectories [18],
and risk-minimization path planners that take into account
human safety, property damage, and noise impact risks [4].
This paper also proposes a method to minimize noise harm,
but with the important distinction that we focus not on
minimizing total noise but inequalities in spatial distribution
of noise—thus innovately considering aspects of fairness.

D. Fairness in robotics and robot paths
Issues of fairness in robotics have been anticipated by

multiple researchers recently [19], [20], [21]. For example,
[19] shows how issues of bias may take place in robotics
applications such as policing and patrolling, autonomous
vehicle crash optimization, and medical robot resource
allocations. Some researchers [20] have anticipated issues
of bias in social navigation (e.g. proxemics) in cleaning,
guidance and caregiving robots; while others [21], [22] have
focused on rescue and disaster response robots. Similarly
to recent “fair” navigation [21] and coverage [22] work, in
this paper we use simulation of envisioned robot systems
and real census data to anticipate issues of fairness in robot
applications. Instead of disaster response, however, here we
focus on an application with mundane everyday impact—
delivery fleets.

E. Environmental justice
Our focus on fairness is inspired by the body of literature

on “environmental justice” [6]. Work in environmental justice
has shown that urban policy decisions often lead to unequal
spatial distributions of environmental harms. For example,
waste dumping and bad air quality are often concentrated
on poor neighborhoods [6], and transportation policies often
reinforce inequalities of opportunities along economic and
racial factors [7], [6]. Similarly, studies have shown that
aviation often has a strong noise pollution impact on already-
marginalized ethnic communities [8]. The problem is not that
policies target low-income and racial-minority neighborhoods
on purpose, but that inequalities along these axes exist in
housing markets, population distribution, and the organization
of institutions—which then lead to correlations between harm
and socio-economic attributes [6].

This paper is motivated by similar concerns. The premise is
that just like waste management sites and pollutive industries
are are often placed in cheaper land that is close to low-income
residential areas (or often cause a shift in the socio-economic
makeup of those areas)—similar phenomena could happen
with warehouses, distribution centers, and noise of drone
delivery fleets. We therefore focus on anticipating such issues
in drone delivery fleets, in order to promote better design
and regulation of such systems in the future.

III. METHODOLOGY

A. Noise model
Similarly to recent studies on the impact of drones [5],

in this paper we assume drones are omnidirectional point

sources of sound. Thus, we can use the inverse square law
to estimate noise level L2 in dB at a location on the ground,
given the distance to the drone h2 and a known noise level
L1 at distance h1:

L2 = L1 −

∣∣∣∣∣10log10

((
h2
h1

)2
)∣∣∣∣∣ . (1)

As in [5], and consistent with the median value over multiple
low-weight UAV products in [23], we assume that drones
will produce a noise of L1 =90dB at h1 =1m distance.
Therefore, to estimate noise at a given location in the map
xm = (xm, ym, zm), let the noise contribution of drone i be

Li(xm) = 90−
∣∣10log10

(
||xm − xi||2

)∣∣ , (2)

where xi = (xi, yi, zi) is the location of drone i. Then,
assuming noise level is logarithmic with the number of drones
[5], the noise level at xm accounting for N drones is:

L(xm) = 10log10

(
N∑
i=1

10
Li(xm)

10

)
. (3)

This model assumes the city is a free field with no obstructions
or boundaries on the map. Thus, similarly to other studies
[5], we ignore sound reflection and baffle.

B. Fleet deployment simulation

Let S = {1, ...,m}×{1, ..., n} be the space of discretized
locations on a map. We model a robot delivery fleet as a set of
warehouse locations W , a set of drones D, and a set of order
requests R. Each warehouse w ∈W is a location in S. Each
drone d ∈ D is a tuple d = (wd, fd, xd, rd) of the warehouse
it belongs to wd ∈W , a Boolean variable specifying whether
the drone is free (i.e. not flying) fd, the drone’s current
location xd ∈ S, and the currently assigned order request rd ∈
R∪∅. Each request r ∈ R is a tuple of two locations (xb, xc)—
a business location (e.g. a restaurant) and a costumer location
(e.g. a customer’s home). During simulation, whenever a
drone is free it is assigned an order: which requires the drone
to travel to the business to pick up the order, then travel to
the consumer to deliver it, and finally return to its warehouse
to recharge batteries. We assume immediate battery recharges
(e.g. by battery swapping), and thus when a drone becomes
free it is immediately assigned one of the remaining order
requests to be fulfilled. We further assume drones do not
collide even if they are on the same coordinates. This is
a reasonable assumption due to the large area associated
with each coordinate and the possibility to use slight height
variations for each drone to avoid collision. If a drone is busy
then we compute its path as the shortest path connecting the
points xw, xb, xc, xw using a sequence of A* queries with
distance as cost. We assume customer and business locations
follow the same distribution as population density, and thus
generate business and consumer locations randomly according
to population density obtained from census data.

To estimate noise pollution of a fleet, we simulate the
execution of order assignments and flying paths of the fleet.
At each iteration, we compute the location of each drone and
use these locations to compute the noise that is heard across



the whole city using eq. (3). We use a noise map µ : S 7→ R,
where each cell µ(x), x ∈ S, keeps track of the average
noise that is heard in that location throughout the simulation
period. We call µ(x) the “average regional noise” at x.

Algorithm 1 Fleet Simulator Pseudo-code
1: input: S,W,D,R
2: µ← INITIALIZE NOISE MAP(S)
3: while R not empty do
4: UPDATE NOISE MAP(µ,D)
5: for each free drone d ∈ D : fd = 1 do
6: rd ← RANDOM PICK(R); R← R \ rd
7: fd ← 0
8: for each busy drone d ∈ D : fd = 0 do
9: p← A*(d) or p← FairNoiseA*(d, µ)

10: xd ← p[1]
11: if length(p) = 1 then
12: fd ← 1
13: output: µ

Algorithm 1 shows simple pseudo-code for the simulator.
Basically, at each simulation step the algorithm starts by
updating the noise map (using equation (3)) given the
drones’ current locations. Then, the algorithm assigns order
requests to free drones and updates their state. Finally, the
simulator computes (or re-computes) the shortest-path (line
9) to connect each drone’s current location to the remaining
locations it needs to visit (business, customer, and warehouse).
Our baseline method uses A* with distance as cost, and thus
in fact would not need to re-compute it at each iteration, as
paths are constant. Re-computation becomes useful in our
fairness-aware algorithm, which we will explain in Section III-
D. Lines 11-12 serve to identify when a drone has completed
its order request and has returned to its warehouse.

C. Equity and fairness

Due to the non-uniform distribution of population—and
thus the locations for pickup and delivery—paths taken by
drones will also be biased towards flying over specific areas of
the city related to population distribution. Furthermore, even
when warehouses are not located in the center of the region
that they serve, drones will be more likely to pass through
areas that need to be crossed often (e.g. the geometrical center
of the city). Therefore, we expect µ to be far from uniform,
and assume that hotspots and inequalities in the distribution
of noise pollution will be deemed unfair by society and the
people living in high-impact areas.

In this paper we will quantify unfairness of spatial noise
distribution by the standard deviation of regional noise values
(i.e. how much variance exists in the amount of noise that is
heard locally):

σ =

√
1

|S|
∑
x∈S

(µ(x)− µ)2, (4)

where
µ =

1

|S|
∑
x∈S

µ(x). (5)

Fig. 1. Map with warehouse locations (blue pentagons), orders (green
triangles), and drones (red circles).

D. FairNoiseA*

To decrease the inequality of the distribution of city noise,
we propose a path-planning algorithm that explicitly takes
this inequality into account—we will call it FairNoiseA*.
In Algorithm 1, FairNoiseA* replaces A* in line 9. The
idea of the algorithm is to dynamically update the drones’
paths at each simulation step, using an updated map µ of the
average city noise collected so far. FairNoiseA* will compute
paths that visit the businesses, customers, and warehouses in
short distances while at the same time privileging paths that
move over areas with lower average noise. To do this, we
again use A* search to compute paths but where the cost of
transitioning from a cell xd to its neighbor xn is now related
to the average noise of the region surrounding the neighbor:

cost(xn) = α.||xd − xn||+ µ(xn)
P , (6)

where P is a parameter to control the degree of importance
of noise relative to distance, and α is a scaling parameter
(set to α = L1 in our experiments). The larger the value
of P , the more likely drones will be to choose paths along
low average noise cells. For P = 0 the algorithm becomes
agnostic to noise distribution, as in Section III-B.

IV. RESULTS

A. Setup

We conducted a series of experiments to estimate the spatial
distribution of noise in drone fleets. In all experiments we
assumed drones travel at a constant height of 100m and speed
of 22m/s. We considered noise under 45dB to be harmless, and
over 45dB to be equally undesirable by the whole population.
This is based on studies [24] where 45dB is considered to
provoke interference and annoyance, and may add noise to
that typically heard at night in urban areas. Averages of 70dB
provoke hearing loss over time [24], though as we will see
the fleets do not reach such amount of noise.

Fig. 1 shows the map of the considered city—San Francisco.
We chose San Francisco for experiments due to its vibrant tech
sector and frequent testing of new products, thus being a likely
city for actual deployment. The figure shows delivery UAVs as
red dots, drone waypoints (i.e. consumers and businesses) as
green triangles, and warehouses as blue pentagons. We used



Fig. 2. Average regional noise (400 drones delivering a total of 1469 packages per hour).

Fig. 3. Average regional noise. From left to right: 200, 400, 800 drones (delivering 741, 1469, 2956 packages per hour).

Fig. 4. Average regional noise as a function of the number of drones in
the air (related to number of orders per hour). Black dots represent values
at specific locations in the map, while the blue line represent the average.

real coordinates of two Amazon warehouses and a FedEx
shipping center in San Francisco as warehouse locations.
Uber Eats completes at least 10000 orders per day [25],
which corresponds to 400 orders per hour assuming a uniform
distribution, or considerably larger during lunch and dinner
peaks assuming a more realistic distribution. We thus assumed
the delivery fleet needs to fulfil orders in the range of 400-
3000 per hour (requiring 100-800 drones in our simulations).
The noise map was discretized with cells of 100m by 100m.
We used the OpportunityAtlas website2 to obtain data of
population density, based on which we uniformly biased
orders towards highly populated areas. Experiments were
conducted on a 2.3 GHz Quad-Core Intel Core i5 with 16GB
RAM. Code is publicly available (URL in Section I).

2https://www.opportunityatlas.org

B. Noise pollution simulation

Fig. 2 shows the results of simulating a drone fleet of 400
drones delivering 800 packages over a period of 1960 seconds
(on average 1469 orders per hour). The whole simulation
took 82 minutes to complete without parallelization. The
figure shows the average noise across the whole city (average
noise heard at each location throughout the 1960 seconds),
as well as the average undesirable noise (noise over 45dB)
and the histogram of average regional noise. The histogram
shows the distribution of average noise values across the
whole city, meaning that average noise can vary between
30 and 51dB, depending on where you live. The figure
shows that, predictably, areas around two of three warehouses
are frequently visited by UAVs because UAVs always start
and finish orders from a warehouse and need to return to
warehouses for inspection and recharging. However, they do
not limit themselves to a circle around the warehouse but
extend in the direction of the geometrical center of the city
and of highly populated areas. The figure also shows that
these areas are large and reach an average noise of around
50dB. Furthermore, 10.5% of the city experienced over 45dB
average noise.

We also ran a simulation with 200 and 800 drones (741 and
2956 orders per hour respectively). We show these results in
Fig. 3, where we can see that the areas subject to undesirable
noise increase rapidly with the number of drones and orders.
The proportion of the city experiencing over 45dB increases
from 0.8% with 200 drones, to 10.5% with 400 drones, and
21.6% with 800 drones. This relationship between noise and
the number of drones is also shown as a curve on Fig. 4.

https://www.opportunityatlas.org


Fig. 5. Average regional noise with fairness-aware planner FNA* (P=0, P=2, P=5).

Fig. 6. Average regional noise with fairness-aware planner FNA* using P=5 (to compare against Fig. 2)
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Fig. 7. Trade-off between efficiency and fairness.

C. Fairness-aware planner

We then ran simulations on the same 400-drone scenario, us-
ing our noise-distribution fairness-aware planner FairNoiseA*.
Fig. 5 shows the map of undesirable noise obtained by
executing our planner, for P parameters equal to 0, 2, 5
(where 0 is equivalent to no fairness consideration). The
figure shows that our planner is able to considerably reduce
the portion of the city exposed to undesirable noise, from
10.5% of the city to 1.7%. With P=5, these areas become
tightly concentrated around the warehouses.

The algorithm achieves low concentration of noise by
deviating drones’ paths from each other, at the expense of
increasing trajectory lengths and thus delivery times. There-
fore, there is a trade-off between efficiency (average delivery
times) and noise-exposure fairness (standard deviation of the

regional noise). We show this trade-off in Fig. 7, where each
point corresponds to a different value of P. The figure shows
that to decrease standard deviation from 4.2 to 3.5dB (17%
decrease), orders will on average have to be delivered 17%
slower (from 580 to 690 seconds).

Fig. 6 further details the results obtained with P=5. The
figure (left side), when compared to Fig. 2 (left side) shows
that straight-line paths towards population-density hotspots
become less common, and instead noise is more scattered.
Furthermore, the histogram shows that noise is mostly kept
below 45dB (except for a small tail corresponding to the
warehouses), and does not reach 50dB. The histogram also
shows that the peak of noise distribution gets shifted from
35dB to 42dB. This is due to the longer paths of drones and
an increase in visits to low-visited areas.

V. DISCUSSION OF SOCIETAL CONSEQUENCES

The simulation results we obtained show that not consider-
ing spatial noise distribution inequalities when planning paths
for drone delivery fleets can lead to problematic consequences.
In particular, drone delivery fleets will create hotspots of
undesirable noise which extend well beyond the warehouses
and towards high-population-density areas.

Our results also show that accounting for noise distribution
in path planning can decrease the extent of noise hotspots
around warehouses, at the expense of slightly longer deliv-
ery times (though arguably still acceptable from consumer
perspectives, at 11 minutes average in San Francisco).

Another important observation from our modelling and
simulation results is that delivery fleet noise increases rapidly
with the number of drones. This points to a limit of drones



per geographical area after which it becomes impossible to
contain high-noise areas and thus impossible not to affect the
quality of life of neighborhoods located around warehouses.
These areas are also potentially correlated with typical
socio-economic inequalities in urban areas that force poor
communities to live in undesirable environmental conditions
[6]. Such inequality could penalize already marginalized
communities, as repeatedly happens with urban policies of
waste management and transportation [6], [7], [8]. Urban
planning, policy making, and regulation should thus intervene
to avoid such situations.

One limitation of our modelling approach includes the lack
of modelling of take-off and landing, which would further
raise the average levels of noise observed in the present
paper—and thus further aggregate the issues discussed.

VI. CONCLUSIONS

In this paper we proposed a system to simulate the impact
of drone delivery fleets in terms of noise pollution. We used
accepted models of sound propagation, together with real
data on drone noise levels, population density, and warehouse
locations, to simulate noise impact on the city of San
Francisco. Our results show that drone delivery fleets can lead
to noise hotspots that extend far beyond warehouses, at levels
that lead to annoyance and interference of human activities.
This distribution of noise is uneven and concentrated in areas
around warehouses, high population-density areas, and the
city’s geographical center. Our results also show that this
noise increases rapidly with the size of the fleet.

We then introduced a fleet-planning method that takes the
spatial distribution of noise into account. We showed that this
method can balance the level of noise across the city, and
reduce the extend of undesirable noise hotspots considerably
to narrow areas around warehouses. This comes at the cost of
a decrease in delivery speed and a slight increase of city-wide
noise (though below assumed interference thresholds). We
discussed societal consequences and framed the discussion
through the lens of environmental justice.

Important future research directions include the study
of how increasing or spreading out warehouses would
affect noise distributions; a comparison of impact on ur-
ban, suburban, and rural areas; better modeling of order
locations to account for buying power; and the involvement
of stakeholders such as city planners, companies, residents,
and health agencies in finetuning models and requirements.
Some technical improvements can also be explored, such as
better trajectory profile modelling in terms of height, speed,
and acceleration, the inclusion of noise frequencies, as well
planning algorithms with longer horizons and joint warehouse
assignments.
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