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Abstract— We present a novel control architecture for the
integration of visually guided walking and whole-body reaching
in a humanoid robot. We propose to use robot gaze as a common
reference frame for both locomotion and reaching, as suggested
by behavioral neuroscience studies in humans. A gaze controller
allows the robot to track and fixate a target object, and motor
information related to gaze control is then used to i) estimate
the reachability of the target, ii) steer locomotion, iii) control
whole-body reaching. The reachability is a measure of how well
the object can be reached for, depending on the position and
posture of the robot with respect to the target, and it is obtained
from the gaze motor information using a mapping that has been
learned autonomously by the robot through motor experience:
we call this mapping Reachable Space Map. In our approach,
both locomotion and whole-body movements are seen as ways
to maximize the reachability of a visually detected object, thus
i) expanding the robot workspace to the entire visible space
and ii) exploiting the robot redundancy to optimize reaching.
We implement our method on a full 48-DOF humanoid robot
and provide experimental results in the real world.

I. INTRODUCTION

One of the ultimate goals of humanoid robots is to be

able to walk around and perform different kind of actions in

the human environment. The humanoid structure combines

the possibility to locomote in a human designed environment

to the one of interacting with objects through reaching and,

possibly, fine manipulation. However, despite the recent ad-

vancements in robot design and in the control of locomotion,

only a few implementations exist in which walking behavior

is integrated with complex reaching abilities, and in which

these actions are autonomous, goal directed and driven by

robot vision. This is clearly a fundamental prerequisite to

having humanoid robots seamlessly included in our society.

In recent works [1], [2] we explored the concept of

reachability, and we proposed what we call the Reachable
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Space Map (RSM). The reachability is a measure of how well

a 3D location in space can be reached for, depending on the

position and posture of the robot with respect to that location;

it is not just binary information (reachable/non-reachable),

but a measure of the expected quality of the reaching action,

based on the robot’s previous motor experience. We proposed

to encode this information directly in the robot motor space,

and in particular using the motor variables that are involved

in gaze control (i.e. joints of the neck and eyes). The RSM

is a mapping that is learned autonomously by the robot

from motor experience, during the execution of goal-directed

reaching movements: this mapping relates the current gaze

configuration of the robot to the reachability of the fixated 3D

point in space. Therefore, the RSM can be used to estimate

the reachability of a fixated object, and to plan whole-body

movements that increase its reachability, allowing to reach

for the object in a better way; we showed this in previous

simulation results [2].

Starting from this concept, here we propose a novel

control architecture in which both locomotion and whole-

body movements are seen as ways to increase the reachability

of a fixated object, thus realizing a form of autonomous,

goal directed and visually guided behavior that incorporates

locomotion and whole-body reaching. The behavior is reac-

tive, and fundamentally based on the control of gaze, which

serves as a main reference. The robot head is controlled to

gaze at a visually detected target object, and then everything

follows: the robot walks following the gaze direction, the

gaze-encoded reachability is maximized through walking and

whole-body movements, and finally the gaze configuration is

used as a reference for the control of arm reaching.

The rest of the paper is organized as follows. After briefly

reviewing the related work in Section II, in Section III we

present the robotic platform on which we implemented our

system. Then the whole control architecture is described in

Section IV. Finally, we show the experimental results in

Section V, while in Section VI we report our conclusions

and we sketch the future work.

II. RELATED WORK

Behavioral studies on humans enforce the hypothesis of

the presence of a gaze-centered reference frame for the con-

trol of reaching [3] and whole-body reaching [4]. Moreover,

recent studies have assessed the nature of the visual strategies

governing the steering of locomotion [5] and shown that head

angle anticipates walking direction even in the darkness [6].



These findings suggest that humans rely on a gaze-centered

control of both locomotion and reaching: on the other hand,

most humanoid robotics approaches attempt at solving these

control problems through Cartesian global planning. One

example is [7], where whole-body reaching postures are

computed through inverse kinematics and footsteps planned

to avoid obstacles and achieve such a final configuration.

Other works focusing on global planning of whole-body mo-

tion include for example [8] focusing on collision avoidance

or [9] which formulates step planning as part of a virtual

kinematic chain whose inverse kinematics with constraints

are solved numerically. In [10], heuristics inspired from

human motion are proposed for planning of the walk-then-

reach task. Which foot to move, step size and angle, head

direction, among others, are decided based on probability

distributions of observations taken from human motion data.

However, global planning is computationally expensive

and can be difficult to implement in real-time. Moreover,

planning in Cartesian space requires the computation of

the transformations from motor/sensory space to Cartesian

space: this computation is typically affected by some level

of noise and inaccuracy, that may deteriorate the system’s

performance in the real world. Opposed to global planning,

and adopted in the present paper, reactive control based on

visual servoing is an approach which can be easily executed

in real-time. A notable example is described in [11], where

the tasks of visual servoing and grasping are done during

locomotion. The stack of tasks (SoT) framework is used,

which enables several tasks to be executed given a certain

task priority, lower level tasks being kept from interfering

with higher level ones through the use of consecutive null-

space projections. Using this framework, the work described

in [11] deals with arm reaching during locomotion; however,

whole-body reaching is not considered, thus limiting the

robot’s range of action. Similarly to [11], visual servoing

and reaching is also tackled in [12], where reachability is

considered by selection of the best reaching strategy out of

a fixed set (e.g. reaching with the left or right hand).

The main contribution of the present paper with respect to

the works in [11], [12] is the use of the RSM to control the

position and posture of the robot before reaching is executed,

thus optimizing the reaching task based on the estimated

reachability. Exploiting the robot redundancy by controlling

the waist in an optimal way remarkably expands the robot’s

potential, allowing also robots with a limited range of motion

of the arms to perform reaching within a big workspace.

Moreover, as we do not deal at all with Cartesian coordinates,

but only with motor variables (in particular, the ones involved

in the gaze control are the main reference for both control

and optimization of the whole system), we don’t need to

compute the transformations from motor space and visual

space to Cartesian space. Then, in this paper we perform

reaching with the right arm, but our approach is general and

can be easily extended to bimanual reaching, as we showed

in previous simulation work [2].

III. THE HUMANOID PLATFORM

The robotic platform we use in this work is the 48 degrees

of freedom (DOF) humanoid robot KOBIAN [13]. The robot

size is similar to that of an average Japanese woman (see

left image in Figure 1) and its weight is 62 kg. The DOF of

the robot are distributed as follows: 12 in the legs, 3 in the

waist, 14 in the arms, 8 in the hands, 4 in the neck and 7 in

the head (see right image in Figure 1). Joints are controlled

by a PC mounted on the robot’s back, which in turn is a

node of a local network of several PCs. This network is

exploited to perform distributed computation, supported by

the use of YARP [14]. Two color cameras provide 640x480

pixel images at a frame rate of 30 Hz.
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Fig. 1. KOBIAN humanoid robot. Left image: KOBIAN expressing
surprise. Right image: description of the robot 48 DOFs.

As we perform visually-guided locomotion and whole-

body reaching, we aim at controlling the KOBIAN head

(qgaze = [θy θp θv] ∈ R
3: yaw and pitch of the neck,

vergence of the eyes), arm (qarm ∈ R
4: shoulder and elbow

of the right arm), waist (qwaist ∈ R
3: yaw, pitch and roll)

and legs (qrleg ∈ R
6 and qlleg ∈ R

6). The robot end-

effector is represented by a visual marker (a green ball) that

is attached to the wrist (as a marker for the hand); in the

experiments, the target of the reaching movements is a red

ball. The position of the red and green balls’ center in the

camera images is computed with a precision of about ±2
pixels, using a combination of top-down [15] and bottom-up

[16] tracking techniques for extra motion robustness that we

described in [16].

IV. CONTROL ARCHITECTURE

We illustrate here the different components of the control.

A gaze controller (described in IV-A) guarantees tracking

and fixation of the target, and together with the reachability

estimation (obtained by querying the RSM as described

in IV-B) provides the necessary information to drive the

other controllers: a waist controller (described in IV-C) that

maximizes the reachability of the target by finding an optimal

configuration of the body, a locomotion controller (described

in IV-D) that maximizes the reachability by moving towards



the target when it is too far (or back if the target is too close),

steering with a ”follow gaze direction” control approach, and

a controller for arm reaching that uses the gaze configuration

as a reference, as described in IV-E.

The ensemble of these controllers generates a goal-

directed autonomous behavior in which the robot follows

the target in a reactive manner (i.e. no computationally

expensive planning is involved), fully exploiting its high level

of redundancy (i.e. walking, rotating and bending the torso)

to eventually reach for the target object in an optimal way

with respect to the estimated reachability.

A. Gaze control

The gaze controller allows to track and to eventually fixate

a target (i.e. a 3D point in space) by moving the head and

eyes. If the target is visible (i.e. inside the image plane) joints

velocities are generated as follows:

q̇gaze(t) = −Gx(t) (1)

where G ∈ R
3×3 is a positive definite gain matrix and the

position of the target x ∈ R
3 is defined as follows:

x =





uL − uR

(uL + uR)/2
(vL + vR)/2



 =





1 −1 0 0
1/2 1/2 0 0
0 0 1/2 1/2













uL

uR

vL
vR









being (uR, vR) and (uL, vL) the coordinates of the target on

the right and left image plane respectively.

If the target is not visible a stereotyped motion strategy

(i.e. random left-right and up-down movements of the neck)

is used to detect it; then the controller (1) is activated. More

details about this gaze controller can be found in previous

publications [17], [2]. After fixation is achieved we encode

the target position in space using the gaze configuration

qgaze. Since we actuate only 3 DOF of the head+eyes system

the mapping from gaze configuration to target position is

unique, but if more DOF are used the redundancy should be

solved by the gaze controller, as for instance in [18]. This

motor information will be then used as a reference for all

the other controllers described hereinafter.

B. Reachable space map (RSM)

The RSM is a mapping that defines the reachability of a

fixated object (i.e. the reachability of the fixated location in

space) as a function of its position with respect to the robot,

as follows:

R = fRS(qgaze), (2)

where the object position is encoded using the gaze configu-

ration qgaze. The robot learns this mapping incrementally us-

ing LWPR [19], an online algorithm for non-linear regression

that provides a compact representation and can be queried

fast in real-time. After each reaching action, data is collected

in the form (qgaze;R), where qgaze is the gaze configuration

defining the target object position and R ∈ [0, 1] is a

continuous value that represents an evaluation of the action:

if the target is not reached R is in inverse proportion to the

final visual error of the arm reaching (ranging from 0 to 0.5),

while if it is reached R is proportional to the ”optimality”

of the final arm configuration (ranging from 0.5 to 1.0). In

our system we defined this ”optimality” as the distance of

the arm from the joint limits.

Further details about how this mapping is defined and

learned can be found in [2], applied to a different simulated

robot. To realize the experiments described in this paper,

KOBIAN has learned its RSM while performing 500 arm

reaching attempts toward target objects randomly placed

around itself. The normalized mean squared error (NMSE)

of the estimation has been computed with respect to a given

test set of 250 (qgaze, R) samples, not used for training: the

NMSE is 0.35 after the first 25 reaching attempts, then it

drops to 0.17 (after 50 attempts), to 0.10 (after 200 attempts),

and eventually to 0.08 (after 500 attempts). Figure 2 shows

a visual representation of the RSM of KOBIAN after 500

reaching attempts. The output of the RSM is smooth and

continuous, as seen from the smooth color gradient in the

plots: this is an important characteristic since we want to

use the RSM for conrol (as described in Section IV-C).

Fig. 2. KOBIAN’s RSM after 500 reaching actions. Four 2D projections
on the yaw/vergence place, with different values of pitch, namely: pitch =
[−10◦; 0◦; 10◦; 20◦]. The color bar indicates the relation between color
and reachability value: from 0, blue color, to 1, red color.

C. Waist control

The motion of the waist is used to both i) extend the robot

tracking capabilities, that can be limited by the head joint

limits if only the controller (1) is used, and ii) place the robot

in an optimal configuration with respect to the object (i.e.

maximizing the reachability). These two tasks are achieved

using two separate controllers given by (3) and (6).

If during gaze control qgaze reaches the limits, the waist

is used to extend the robot range of action, as follows:

q̇waist = −Gwx (3)

where Gw ∈ R
3x3 is a positive definite gain matrix.

If instead qgaze is within the limits, the tracking (i.e.

fixating) task can be accomplished actuating only the qgaze

joints using (1), and therefore the waist joints can be used to

position the robot in an optimal configuration with respect



to the object. To realize this task, first we compute the head

and eyes velocity that would realize a desired change in the

reachability. To do this, we exploit the pseudo-inverse of the

Jacobian of the RSM, which is obtained by differentiating

(2), as follows:

JRS(qgaze) : Ṙ = JRS(qgaze)q̇gaze (4)

q̇
d
gaze = J†

RS(qgaze)dR
d (5)

where dRd is the desired change in the reachability, which

is typically chosen as the difference between the maximum

reachability (Rmax = 1.0) and the current one R, leading

to dRd = Rmax − R. Then, from the desired head and

eyes motion q̇
d
gaze we derive a motion of the body q̇b that,

if executed, would cause the head and eyes to follow the

desired motion q̇
d
gaze because of the gaze controller (1). This

transformation from head and eyes motion to body motion

is obtained exploiting an approximated kinematic model,

q̇waist = Kbhq̇
d
gaze (6)

where Kbh ∈ R
3x3 is the constant matrix defining the model.

The idea behind this controller is that the robot redundancy

can be exploited replacing the motion of the head and eyes

joints with the motion of the waist.

D. Locomotion control

The reachability information can also be used to trigger

locomotion of the robot towards the target in a similar way to

(6): where vergence is directly controlled by locomotion in

the direction that increases reachability. This way, a reference

walking progression speed Wref (positive or negative for

forward or backward walking) can be computed from the

RSM,

Wref = Klocoq̇
d
gaze(2), (7)

where Kloco ∈ R is a constant relating desired vergence to

cartesian speed and q̇
d
gaze(2) the vergence component of the

desired gaze velocity obtained from (5). On the other hand,

the direction that increases reachability is naturally the gaze

direction when the target is fixated or the robot would deviate

from that target. Practically locomotion steering can hence be

implemented by a gaze-centered locomotion control inspired

by the ”locomotion follows gaze” finding [6] as to center

gaze with respect to the body.

We define the orientation of the robot waist in the world

as α(t) and its average rate of change as α′(t) = α(t +
∆s) − α(t) where ∆s is the duration of a step. At time t,
footsteps t and t−∆s are on the floor, and the swing foot’s

motion is defined by θ′ft(t) = θft(t + ∆s) − θft(t − ∆s).
Swing foot displacement is fully defined by Wref and θ′ft(t)
by assuming that at the middle of the double support phase

the waist lies in the middle of the two feet.

A gaze-centered control basically steers walking direction

to bring the yaw component of qgaze to zero,

α′(t) = −Gloco.qgaze(0), (8)

where Gloco ∈ R is a control gain. Satisfying α′(t) could

imply feet collision or reaching joint limits at the current

desired progression speed Wref and so measures must be

taken as to scale down Wref and α′(t) to avoid such

situation. Given Wref , the goal is then to compute θ′ftsafe(t)
and α′

safe(t) leading to the maximum real progression speed

Wsafe ≤ Wref that still avoids joint limits and self-collision.

The following optimization problem needs to be solved:

max
feetcollision(θ′

ft(t))=0

Ax≤b

W, (9)

where W is the executed progression speed and

feetcollision(θ′ft(t)) indicates whether a swing foot

motion that satisfies θ′ft(t) without collisions exists. The

optimization variable is defined as z = [α′ θ′ft], while A
and b are set as to satisfy leg joint limits (qlleg , qrleg , α′)

and progression limits (W ≤ Wref ). One possible solution

to this optimization is to select a foot transition from a set

of safe foot trajectories which is available a priori. This

is a usual approach in footstep planning works that plan

feet trajectories on a A* algorithm given a small set of

feet transitions [20]. For simplicity, in this work we set a

heuristic where turning speed is proportional to progression

speed and the feet are parallel to the waist, as follows:

α′
safe(t) = α′(t).Wsafe/Wref

θftsafe(t+ 1) = αsafe(t+ 1).
(10)

Compared to an A* approach, such heuristics allow for

high precision of movement since transitions are not dis-

cretized, at the extra cost of feet collision computation. Feet

collision is in our implementation computed by intersection

of the two feet as 2D polygons. The whole-body, dynami-

cally stable, locomotion pattern is then generated from (7)

and (10) through use of the FFT-based pattern generator

described in [21], [22]. The pattern generator computes a

compensation of the torso trajectory, in a multibody system

dynamics approach, leading to the desired ZMP trajectory.

ZMP reference trajectories were set as to lie on the stance

foot’s center during the whole swing phase and to smoothly

shift (through spline interpolation) to the other feet during

double support phase. A feedback controller is active during

the whole procedure, which compensates for disturbances of

the ZMP with respect to the reference.

E. Arm reaching control

The approach we use for controlling arm reaching was

initially proposed in [17], and slightly modified in [2]. The

version we use here is the same as [2], but applied to the

KOBIAN robot. The reader can refer to those publications

to get detailed descriptions of the controller. Two kinematic

models (that are learned online during the movements) are

employed in the control. A motor-motor mapping qgaze =
fFK(qarm) relates the gaze configuration to the arm position

which brings the end-effector (i.e. robot hand) to the fixation

point: inverting this function allows to retrive the desired arm

position to reach for the target in an open-loop fashion. Then

an additional closed-loop controller based on visual servoing

is used to eliminate small position errors when the hand is

close to the target.



V. EXPERIMENTAL RESULTS

We validated the proposed methodology by performing a

series of locomotion and whole-body reaching trials using the

KOBIAN robot. Trajectories of all joints (i.e. joint encoder

values) and reachability R of the target were recorded with a

sampling rate of 50 Hz. In each trial a target object is placed

far away from the robot, at a distance between one and three

meters. The gaze controller is always active for the whole

duration of the experiment. After the initial fixation of the

target, the low level of reachability obtained from the RSM,

combined with the observation of a small value of vergence

(i.e. fixated target far from the robot), triggers the activation

of the walking controller. Then the robot walks keeping

fixation of the target, until the vergence reaches a threshold

value. Then the whole-body reaching action starts: the robot

moves the waist to find an optimal posture with respect to

the target object, and then the arm reaching movement is

executed. We measure the outcome of the reaching action

in terms of optimality of the final arm configuration (i.e.

distance from joint limits), to prove that through the use of

the RSM the robot is not only able to successfully reach for

the targets, but it does so in an optimal way.

TABLE I

REACHABILITY R IN 10 TRIALS

Beginning After locomotion After waist control

Mean 0.37 0.48 0.67
Std-dev 0.02 0.07 0.07

One of the trials is shown in Figures 3 and 4 as an exam-

ple. By comparing the reachability and joint trajectories, the

effects of each controller on target reachability become clear:

while locomotion mainly acts on the vergence component of

gaze to bring the target closer to the robot, it can only bring

R so close to the reachable-unreachable threshold (R = 0.5
indicates the target can be reached with zero visual error).

The waist controller then compensates for the low range

of movement of the arms and is the main responsible for

optimizing the reaching task since most of the increase in

R occurs during waist activation. This intuitive result comes

from the kinematic constraints of the robot (e.g. height during

natural locomotion, arms’ low range of movement), which

for most target positions makes the use of waist motion

mandatory for a successful reach. By comparing the gaze

trajectories with the RSM of KOBIAN in Figure 2, it is also

clear that the trajectories are consistent with the map and

follow a path to its maximum. A sequence of images of the

robot during this trial is shown in Figure 4.

For all 10 trials the robot managed to reach for the target.

On average, as seen in Table I, with locomotion the target

was brought from an initially unreachable state to a position

which is reachable with low visual error (R close to 0.5).

The final R = 0.67, if interpreted in terms of the distance of

the joints from (qmax + qmin)/2, corresponds to an average

normalized distance of M = 0.66 - meaning the arm joints

are still far from reaching their limits (M = 1).
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Fig. 3. Trajectories of R, gaze and waist angles and waist position in
space during one whole-body reaching trial. Target is reached at t = 56.

VI. CONCLUSIONS AND FUTURE WORK

We presented, implemented and validated a novel control

architecture for gaze-centered whole-body reaching and lo-

comotion. The proposed architecture enables a robot with

restricted arm workspace (as it can be noticed in Figure

2) to reach for targets initially unreachable: not only with

a successful reach in all experimental trials but also in an

optimal way in terms of distance of the arm joints from

their limits. This result is achieved in a real scenario using

a reactive, local control that exploits the RSM representa-

tion. Because of its definition in the motor space and its



Fig. 4. Sequence of images taken during one of the integrated locomotion and whole-body reaching experiments (t = 14, 24, 34, 54, 56).

compact representation, the RSM proves to be well suited

for online control of a complex task such as whole-body

reaching. Future work will focus on extensions to reaching

with obstacle avoidance: this could be done by fixating

the obstacles and representing them as repulsive fields in

the RSM map (similarly to [23]). Then, other interesting

research directions include the gaze-encoded prediction of

target motion, that would allow dynamic reaching-while-

walking with moving targets, and the gaze-encoded planning

of locomotion viapoints, that would allow to avoid obstacles

during both walking and reaching. To cope with these more

complex scenarios, the reactive approach proposed here

might be combined with planning: one possibility could be

to exploit both approaches together with different control

rates, the latter being realized at a slower rate than the

former. Indeed, although not yet explored in this work, the

RSM can be used not only for local control (e.g. gradient

descent like in the present paper) but also global planning.

Because of its compact map representation, planning in RSM

space is promisingly more computationally efficient than

traditional geometric and kinematic planning. As opposed

to local techniques, global planning in RSM space could

possibly improve even further the optimality of the reaching

movements as it allows to avoid local maxima. In the future

we will explore this planning paradigm, as well as more

extensively validate gaze-centered locomotion.
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