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Abstract— We present a grid-based 3D reconstruction
method which integrates all costs given by stereo vision into
what we call a Cost-Curve Occupancy Grid (CCOG). Occu-
pancy probabilities of grid cells are estimated in a Bayesian
formulation, from the likelihood of stereo cost measurements
taken at all distance hypotheses. This is accomplished with
only a small set of probabilistic assumptions which we discuss
in the paper. We quantitatively characterize the method’s
performance under different conditions of both image noise
and number of used stereo pairs, compared also to traditional
algorithms. We complement the study by giving insights on
design choices of CCOGs such as likelihood model, window
size of the cost function and use of a hole filling method.
Experiments were made on a real-world outdoors dataset with
ground-truth data.

I. INTRODUCTION

Occupancy grids [1] are a major tool for robot mapping
and planning (e.g. [2], [3], [4]). This framework models the
environment as a grid of cells which can be either occu-
pied or free, with an occupancy probability computed from
measurements of object distances integrated over time. In
stereo vision, distances to objects are estimated at each image
pixel by computing a cost for each distance hypothesis. This
cost-curve provides a confidence on each distance hypothesis
which could be further used to accumulate occupancy evi-
dence over time. However, it is common practice in both
occupancy grids [2], [5], [6], [7], [8] and stereo fusion
algorithms [9] to integrate only the measurements taken at
least-cost distance. In some works, the value of the minimum
of the cost-curve is used to discard low confidence matches
[2], [9], [8], but other entries of the cost-curve are not used.
A notable exception is for example [10], where a low number
of best hypotheses are kept, but still the whole probability
distribution over distance that stereo provides is not fully
integrated into a probabilistic framework.

In [11] we proposed a new kind of occupancy grid algo-
rithm, to which we here call Cost-Curve Occupancy Grids
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(CCOGs). Such algorithms integrate all distance hypotheses
of stereo over time from a direct measurement model of the
those costs. The method then relied on a few strict assump-
tions which we alleviate in this paper. Also, performance of
occupancy grids both in CCOGs and in methods considering
only least-cost distance has not yet been fully characterized
in terms of robustness to image noise, number of stereo pairs
used for the reconstruction, or design choices such as stereo
model and hole filling. In this paper we approach all these
issues with experiments on real-world outdoor datasets.

This paper has the following contributions:
1) A Bayesian occupancy grid formulation for stereo-vision
using its whole cost-curve and direct models of stereo
cost measurement. We call it Cost-Curve Occupancy Grid
(CCOG). With respect to [11], we relax a number of
probabilistic assumptions and describe how we integrate
these CCOGs over time using Bayes filters, as well as how
reconstruction holes are dealt with.
2) We thoroughly characterize performance of CCOGs on an
outdoor dataset both in terms of the number of stereo pairs
used for reconstruction and robustness to image noise.
3) We provide insights regarding the design choices associ-
ated with CCOGs such as stereo model choice, cost function
window size and hole filling method. Their influence to
reconstruction performance is quantified.

II. RELATED WORK

In applications of occupancy grids to stereo vision, several
algorithms have been proposed where measurements of dis-
tance are taken from the least-cost distance of each pixel
[2], [5], [6], [7], [8]. For example, Andert [6] proposed
an algorithm where occupancy is computed from least-
cost distance assuming a model of measurement uncertainty
which increases with distance itself. Similar models of stereo
have long been introduced, some of them accounting also
for distance to image edges [3]. Some works have dealt with
the possibility that the minimum cost does not correspond
to true disparity by filtering out pixels where a smoothness
constraint was not verified [2], or by assuming a certain prior
probability of such errors occurring [7]. An elaborate model
recently proposed by Pfeiffer et al. [8] used a likelihood
function for correspondence errors of the minimum cost by
training on human-labeled datasets.

On the multi-view stereo literature it is more common
for multiple distance hypotheses to be considered, however
at the cost of strong computational requirements and GPU
implementations. In [12], for example, each distance hypoth-
esis accumulates an L1 norm of all pixel intensity errors



falling in that 3D point from several images. An energy
minimization algorithm is then run such that both the total
error and a regularization term are minimized. Merrell et
al. [9] fuse several stereo pairs into one 3D reconstruction
based on geometric constraints and a Gaussian model of
cost likelihood. This likelihood is nevertheless used only
as a confidence for the least-cost distances. The work was
then extended by Hu et al. [10] in order to use the 3
highest likelihood distance hypotheses. Distance is there
estimated as the likelihood-weighted average of the distances
obtained from several stereo pairs. When compared to such
multi-view stereo methods, CCOGs are both computationally
inexpensive, probabilistically defined and integrate the whole
probability distribution of distance given by the cost-curve.

III. COST-CURVE OCCUPANCY GRIDS

A. Definition

Consider a sensor ray r as the line defined by the origin
of the sensor and a point in the world to which distance is
measured. The point which is measured is called the target
of that ray. In laser sensors a ray exists for each direction at
which the laser measures a distance, while in stereo vision
a ray exists for each image pixel. We define Cost-Curve
Occupancy Grids (CCOGs) as 1-dimensional grids aligned
with a sensor ray. The grid is divided into N cells and each
cell i can in be in one of two states: occupied Oi or free
Oi. The specificity of CCOGs is that they are designed for
sensors which provide a quantitative cost E(r)

i of assigning
the target of ray r to each cell i. Stereo vision is such a
sensor since it matches a pixel in one image to another in a
second image, measuring a cost for each match hypothesis.
The curve E(r) = E

(r)
1 , ..., E

(r)
N is called the cost-curve of

stereo matching and the number d = N−i is called disparity.
The objective of CCOGs is to compute the probability of

occupation of each cell i given the cost-curve E(r),

P (Oi|E(r)) = P (OiV i|E(r)) + P (OiVi|E(r)), (1)

where Vi is short for the event O1 ∩ O2... ∩ Oi−1 and
represents visibility of cell i. Using Bayes’ rule, the first
term in equation (1) can be rewritten as P (OiV i|E(r)) =
P (Oi|V iE(r))P (V i|E(r)), whereas the second term can be
rewritten as P (OiVi|E(r)) = P (Oi|ViE(r))P (Vi|E(r)).

As we showed in [11], P (Vi|E(r)) can be computed by
recursively applying the definition of conditional probability,

P (Vi|E(r)) = P (Vi−1Oi−1|E(r))

= P (Oi−1|Vi−1E(r))P (Vi−1|E(r))

= ... =
∏

j=1...i−1
P (Oj |VjE(r)).

(2)

On the other hand, P (Oi|ViE(r)) is given by

P (Oi|ViE(r)) =
p(E(r)|OiVi)P (OiVi)
P (Vi|E(r))p(E(r))

, (3)

where P (OiVi) is a prior on world geometry. The denomi-
nator of (3) can also be computed recursively as

P (Vi|E(r))p(E(r)) =

= P (OiVi|E(r))p(E(r)) + P (OiVi|E(r))p(E(r))

= p(E(r)|OiVi)P (OiVi) + P (Vi+1|E(r))p(E(r))

= ... =
∑

j=i...N

p(E(r)|OjVj)P (OjVj),

(4)

where we assume that P (VN+1|E(r)) = 0, as we will
explain next. From this equation it is now possible to
estimate P (Oi|ViE(r)) without assuming any strict proba-
bilistic assumptions that we originally proposed in [11] (i.e.
independence of Vi and E(r) and

∑
P (Oi|ViE(r)) = 1).

Before we continue with the formulation of CCOGs, we now
clarify the whole set of assumptions we make in this work:
• A target exists for any ray r, or in other words,

there exists at least one occupied cell along r. Thus
P (VN+1) = 0 and P (VN+1|E(r)) = 0;

• The target is equally probable to be at any of the cells
along a ray r. Thus P (OiVi) = 1/N ∀i;

• The cost-curve can give no information about occu-
pancy on invisible cells V i. Thus P (Oi|V iE(r)) =
P (Oi|V i), which corresponds to a prior on world
geometry. In our work we model this prior as a constant
0.5 for all i, so that occupied and free cells are equally
probable. Thus P (Oi|Vi) = 0.5 ∀i;

• Costs along a cost-curve are independent from each

other. p(E(r)) = p(E
(r)
1 ...E

(r)
N ) =

N∏
j=1

p(E
(r)
j )

• Occupancy or visibility on a cell i gives no information
on a cost E(r)

k for k 6= i. Thus p(E
(r)
k |OiVi) =

p(E
(r)
k ) ∀k 6=i;

From (3), (4) and the second assumption follows that

P (Oi|ViE(r)) =
p(E(r)|OiVi)
N∑
j=i

p(E(r)|OjVj)
, (5)

and finally, according to the last 2 hypotheses,

p(E(r)|OiVi) = p(E
(r)
i |OiVi)

∏
k 6=i

p(E
(r)
k ). (6)

The function p(E
(r)
k ) can either be measured directly from

sensor measurements or assumed to be uniform by design.
That case further simplifies equation (5) to:

P (Oi|ViE(r)) =
p(E

(r)
i |OiVi)

N∑
j=i

p(E
(r)
j |OjVj)

. (7)

B. Traditional occupancy grids as a special case of CCOGs

In traditional occupancy grids, a single metric distance
to a target is directly or indirectly measured [1]. Since no
other information is available, the real distance to the target
is modeled as a normal distribution around the measured
distance. Uncertainty on the measurement is modeled using



the distribution’s variance. Such range sensors can thus be
seen as a special case of cost-curve sensors, but where a
single cost is measured. If a target is measured to be at cell
k, then in our formulation E(r)

k is minimum and E(r)
i ∀i 6=k are

equal and maximum. In traditional range-measurement occu-
pancy grids we then have p(E(r)|OiVi) ∝ exp

(
− (i−k)2

2σ2
range

)
,

to which all equations we just defined apply. Such models in
computer vision are referred to as ”winner-take-all” (WTA)
models, where the distance with minimum cost is selected
and the rest of the cost-curve discarded. We include this
model in our evaluation as well and defined it in Section IV.

C. Grid projection and hole filling
We define Rt as the set of all sensor rays r measured

at time t, thus providing a set of 1-dimensional CCOGs
P (Oi|E(r)). These occupancy probabilities are projected
onto a global grid G fixed on the environment according to
a transformation between sensor and environment coordinate
frames at that instant of time: Tt. Our objective is then to
compute P (GXY Z |RtTt), where GXY Z is the event that the
cell at 3D coordinates (X,Y, Z) is occupied. For a sparse
sensor such as stereo vision, the resolution of CCOGs will
most likely be different from that of the G since sampling
along a sensor ray is not uniform in metric space. Several
sensor rays might then intersect the same global grid cell and
several cells might not be intersected by any ray. The usual
practice when several rays intersect the same GXY Z is to
take the maximum occupancy probability of measurements
projecting in that cell. On the other hand, holes in the
reconstruction can either be left empty by attributing a prior
P (O) = 0.5, or filled by interpolation of the nearest neighbor
measurements. In this work we compare 2 design choices:
• No hole filling (sparse projection). P (GXY Z |RtTt) =
P (O) = 0.5, for all (X,Y, Z) where no sensor mea-
surement is projected.

• Hole filling by nearest neighbor attribution.
P (GXY Z |RtTt) = P (On|E(s)), for all (X,Y, Z)
where no sensor measurement is projected. n and s in
this case define the nearest cell in the set of sensor
rays Rt. Such an approach thus corresponds to a prior
on a piecewise smooth world geometry: closely located
cells are likely to have similar occupancy probabilities.

D. Time filtering
Assuming each cell (X,Y, Z) to have a static state, a

binary Bayes filter can be used to compute the probability
P (GXY Z |R0:tT0:t), where R0:t = R0, R1, ..., Rt and T0:t =
T0, T1, ..., Tt. To avoid numerical problems near probabilities
1 and 0, we use a log odds version of the filter as in [13]:

lt,XY Z = lt−1,XY Z + log
P (GXY Z |RtTt)

1− P (GXY Z |RtTt)
− l0, (8)

where l0 and lt,XY Z are defined as

lt,XY Z = log
P (GXY Z |R0:tT0:t)

1− P (GXY Z |R0:tT0:t)
, (9)

l0 =
P (O)

1− P (O)
. (10)

IV. STEREO MODELS FOR CCOGS

Consider two images I1 and I2, aligned along an x axis. In
stereo vision, the cost-curve E of assigning I2(x, y) to I1(x+
d, y) is computed for each pixel (x, y) and d = N−i is called
disparity. The cost-curve’s global minimum, which occurs at
imin = N−dmin, is here referred to as Emin. Common cost
functions for E are the Sum of Squared Differences (SSD),
Sum of Absolute Differences, different forms of Correlation
and others [14]. In this work we use the SSD since it is used
by the first likelihood model.

A. Merrell’s model

Merrel et al. [9] proposed the following stereo model:

p(Ei|OiVi) ∝ exp
(
− (Ei − Emin)2

2σ2
Mer

)
, (11)

where Ei is a cost function value (e.g. Sum of Squared
Differences) and σ2

Mer is a parameter which depends on
image noise. In this paper and similarly to [11], we compute
the maximum likelihood estimate of σ2

Mer as the variance of
all Emin in each stereo pair σ̂2

Mer = V ar(Emin).

B. Matthies’ model

This model was originally proposed in [15] by Matthies
and Okutomi. It is defined as

p(Ei|OiVi) ∝ exp
(
−E

T
i Ei
2σ2

px

)
, (12)

where Ei is a vector containing the pixel differences inside
the support window at cell i (note that ETi Ei is thus a
Sum of Squared Differences cost function). Parameter σ2

px

represents pixel intensity noise variance. In [11] we pro-
posed to compute the maximum likelihood estimate σ̂2

px =
V ar(I2(x, y) − I1(x + dmin, y)) from all pixels (x, y) in
each stereo pair.

C. Winner-take-all model

A winner-take-all (WTA) model can be defined as

p(E|OiVi) ∝ exp
(
− (i− imin)2

2σ2
i

)
. (13)

In practice, in stereo-vision applications, σ2
i is often assumed

to be dependent solely on cell size [7] and σ2
i = 0.52.

Equation (13) is thus often approximated by

p(E|OiVi) =

{
1, if i = imin

0, otherwise
, (14)

which is the model we used in our experiments.

V. EXPERIMENTAL EVALUATION

We evaluated the performance of the proposed CCOGs
by comparing the final P (GXY Z |R0:tT0:t) obtained on a
stereo-vision sequence to its ground-truth occupancy grid.
The dataset used was the KITTI dataset of outdoor stereo
images [16] which is publicly available. Specifically, we used
the residential area dataset ”2011 09 26 drive 0079”, where
a stereo-vision equipped car is driven on a static environment



Fig. 1. Frames t = 0 and 50 of the used dataset: publicly available KITTI
residential area dataset ”2011 09 26 drive 0079”.

Fig. 2. Ground-truth grid G∗ obtained from the laser-rangerfinder data.
Cells are marked in green over the laser point data. Cells at the ground level
were discarded for better visualization.

(i.e. no moving obstacles). Two frames of the image sequence
are shown in Figure 1. The dataset contains a sequence
of stereo pairs synchronized with laser-rangefinder measure-
ments and localization data. We suppose pixel intensity noise
σ2 of the images is dependent only on the cameras and thus
estimated it from the average variance of pixel intensity on
the no-car-movement dataset ”2011 09 28 drive 0043”. Our
noise estimate was σ2 = 13.

We estimated a ground-truth grid G∗ from the laser-
rangefinder data by considering cells that were occupied with
point data in more than 10 frames as occupied, and the rest
as free. Cells were set as cubes of 0.20 meters each side.
We show G∗ in Figure 2 as green-colored squares over the
laser data. Each grid G was compared with G∗ by counting
the following quantities:

• The number of true positives tp, i.e. the number of cells
that satisfy P (GXY Z |R0:tT0:t) > 0.5 and G∗XY Z ;

• The number of false positives fp, i.e. the number of
cells that satisfy P (GXY Z |R0:tT0:t) > 0.5 and G

∗
XY Z ;

• The number of true negatives tn, i.e. the number of
cells that satisfy P (GXY Z |R0:tT0:t) > 0.5 and G

∗
XY Z

• The number of false negatives fn, i.e. the number of
cells that satisfy P (GXY Z |R0:tT0:t) > 0.5 and G∗XY Z .

We focused our evaluation on two criteria:

• Precision of G. precision = tp
tp+fp

• Recall of G. recall = tp
tp+fn

TABLE I
PRECISION (P) AND RECALL (R) IMPROVEMENT OBTAINED WITH NN

HOLE FILLING WHEN COMPARED TO A SPARSE PROJECTION

Pstart Pend Rstart Rend

Mean improvement −0.0891 0.0878 0.089 0.120
Std-dev improvement 0.109 0.026 0.033 0.037

Using these criteria, we experimentally quantify the influence
of the following design choices on CCOG performance:

A. Hole filling

We measured the precision and recall ratios at the start of
the image sequence (t = 0) and after integration of 20 stereo
pairs (t = 0,5,10,...,95), for all stereo models and different
cost function window sizes. When compared to a sparse
grid, both ratios improved with the use of a dense nearest
neighbor hole filling strategy. In Table I we show the average
improvements of precision P computed as (Pnn − Psparse)
and recall R as (Rnn − Rsparse). Hole filling by setting
occupancy values to the nearest stereo measurement basically
corresponds to a prior on continuous world geometry. Even
if certain false-positive problems arise from such approach
at the first frames (i.e. there is low precision at the start
due to a bad reconstruction far away from the camera), our
data indicates that it can nevertheless lead to an important
increase in both precision and recall over time. As more
measurements are filtered both precision and recall of the
map increase more in the case of hole filling (see Pend, Rend
in Table I). Such hole filling approaches are also common in
multi-view stereo literature [9], [10] where piece-wise linear
disparity maps are assumed. Our experiments also indicate
this assumption to have a positive impact to reconstruction
results.

B. Stereo model

In Figure 2 we show the ground-truth grid G∗, where
cells at the floor level were discarded for better visualization.
Figure 3 shows the obtained reconstruction using CCOGs
with Merrell’s and Matthies’ models (cost function window
size 13x13, nearest neighbor hole filling, after integration of
all images t = 0,5,10,...,95). Merrell’s model lead to a more
reliable reconstruction with a low number of false-positives,
even though objects were reconstructed mainly on textured
regions. It is clear that, for example, the car on the lower left
corner of the image is only reconstructed on visual edges (the
corners of the car). Salient obstacles such as the tree on the
lower right corner and bushes and fence on the upper right
were, however, either partly or fully reconstructed. False-
positives are shown in brown color and are very scarcely
located, often close to real objects in G∗. Matthies’ model,
on the other hand, has good reconstruction on low-textured
objects (e.g. the wall on the right, a higher portion of the
car) however at the cost of a high false-positive ratio.

Using a WTA model (i.e. discarding all costs except the
minimum), on the other hand, leads to an even higher number
of false positives, which shows the advantage of exploiting



Fig. 3. Top: Merrell’s model. Bottom: Matthies’ model. Green squares
represent true-positives (i.e. cells correctly classified as occupied), brown
squares represent false-positives (i.e. cells incorrectly classified as occupied).

Fig. 4. Grid obtained using a traditional winner-take-all (WTA) model
which discards the whole cost-curve except its minimum. Green squares
represent true-positives, brown squares represent false-positives.

the cost-curve of stereo in CCOGs. The grid obtained with
WTA is shown in Figure 4. In Figure 5 we show the obtained
precision and recall ratios over time for the 3 stereo models,
using nearest neighbor hole filling. Each dot represents a
new stereo pair being used to update the grid, corresponding
to frames t = 0,5,10,...,95. Both precision and recall in-
creased considerably over time. Precision increased with cost
function window size, while recall slightly decreased. An
explanation for the lower recall of larger window sizes is that
such cost-curves have less distinctive minima, which after
the normalization in equation (7) leads to low occupancy
probabilities. Stereo models including the whole cost-curve
(i.e. Matthies, Merrell’s) noticeably increased precision of
the grids with respect to a WTA model, thus showing the
advantages of CCOGs and whole cost-curve approaches to
mapping in general. We obtained precision above 0.8 for

TABLE II
MAXIMUM ACCEPTABLE IMAGE NOISE VARIANCE σ2 FOR DESIRED

GRID PRECISION

Mat Mer WTA
Min. precision 0.65 − − −

SSD 5x5 Min. precision 0.75 − − −
Min. precision 0.85 − − −
Min. precision 0.65 25 83 15

SSD 9x9 Min. precision 0.75 14 43 −
Min. precision 0.85 − − −
Min. precision 0.65 15 177 83

SSD 13x13 Min. precision 0.75 13 83 14
Min. precision 0.85 − 43 −

large window sizes, while recall was around 50%. Merrell’s
model had the highest precision and second highest recall,
while Matthies’ model is better than WTA for smaller win-
dow sizes. The WTA model lead to the lowest precision grids
and high recall, which indicates a grid where the number of
false positives is dangerously high (as seen in Figure 4).

We also analyzed the influence of image noise in the
performance of CCOGs. In Figure 6 we show results taken
after integration of all images, but where different levels
of Gaussian noise were added to the stereo pairs. Taking
into consideration the original noise estimate of σ2 = 13,
the resulting pixel intensity noise variance levels tested
were σ2 = 13,14,15,18,25,43,83,177 and 397, where pixel
intensity is in the range [0; 255]. Although larger cost func-
tion window sizes lead to higher robustness to noise, the
performance of the occupancy grids quickly deteriorates in
all cases. Matthies’ model’s recall deteriorates for 13x13
windows, as also seen in Figure 5. This is due to a very low
parameter estimate (single pixel noise) when compared to the
cost function value. Merrell’s model lead to slightly slower
precision deterioration than other models. For instance, on
a 13x13 window size and if the minimum desired precision
is 0.75, the maximum allowed image noise is 13, 83 and
14, for Matthies’, Merrell’s and WTA models respectively.
In Table II we present the maximum allowed image noise
for different values of minimum precision.

Finally we estimated the relationship between grid preci-
sion and noise variance. After fitting polynomial, exponential
and power functions to the precision(noise) data we found
a function of the power of noise, precision(σ2) = a∗(σ2)b+
c, to be the best fit in all models (SSE ∈ [0.0003; 0.004]).

VI. CONCLUSIONS

We introduced the CCOG, a grid-based 3D reconstruction
method that estimates occupancy in sequences of stereo pairs.
The key feature of the method is that occupancy is computed
not from the least-cost estimate of distance given by stereo,
but from the likelihoods of all costs along the cost-curve.

We showed that our approach leads to reconstructions
with higher precision and more robustness to image noise
than those obtained by only considering least-cost distance
hypotheses. We also evaluated the performance of CCOGs
under different design choices. We showed that hole filling
with a nearest neighbor strategy, despite the strong geometry
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Fig. 5. Precision and recall ratios obtained over time, from t = 0 to t = 95, using different stereo models.
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Fig. 6. Precision and recall obtained after integration of all images (t = 0,5,...,95), for different values of image noise σ2 = 13,14,15,18,25,43,83,177,397.

prior it assumes, can lead to grids with not only higher
recall but higher precision as well. Using cost functions
with larger window sizes naturally lead to better results,
while the stereo confidence model proposed by Merrell et al.
in [9] provided the most reliable reconstructions and noise
robustness. Each model seems to be better for different image
texture conditions, which makes research into combining
different confidence models relevant. Precision of CCOGs
was observed to be a power function of image noise.

REFERENCES

[1] A. Elfes, “Sonar-based real-world mapping and navigation,” vol. 3,
no. 3, pp. 249–265, 1987.

[2] D. Murray and J. J. Little, “Using real-time stereo vision for mobile
robot navigation,” Autonomous Robots, vol. 8, no. 2, pp. 161–171,
2000.

[3] L. Matthies and A. Elfes, “Integration of sonar and stereo range
data using a grid-based representation,” 1988 IEEE International
Conference on Robotics and Automation, pp. 727–733, 1988.

[4] S. Thrun, “A probabilistic online mapping algorithm for teams of
mobile robots,” International Journal of Robotics Research, vol. 20,
p. 2001, 2001.

[5] H. Badino, U. Franke, and R. Mester, “Free space computation using
stochastic occupancy grids and dynamic programming,” in Workshop
on Dynamical Vision, ICCV, October 2007.

[6] F. Andert, “Drawing stereo disparity images into occupancy grids:
measurement model and fast implementation,” in IEEE International
Conference on Intelligent Robots and Systems, 2009, pp. 5191–5197.

[7] M. Perrollaz, A. Spalanzani, and D. Aubert, “Probabilistic represen-
tation of the uncertainty of stereo-vision and application to obstacle
detection,” 2010 IEEE Intelligent Vehicles Symposium, pp. 313–318,
June 2010.

[8] D. Pfeiffer, S. Gehrig, and N. Schneider, “Exploiting the power of
stereo confidences,” in 2013 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2013, pp. 297–304.

[9] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm,
R. Yang, D. Nistér, and M. Pollefeys, “Real-time visibility-based
fusion of depth maps,” in 2007 IEEE 11th International Conference
on Computer Vision. IEEE, 2007, pp. 1–8.

[10] X. Hu and P. Mordohai, “Least Commitment, Viewpoint-Based,
Multi-view Stereo,” in 2012 Second International Conference on
3D Imaging, Modeling, Processing, Visualization and Transmission
(3DIMPVT), Oct 2012, pp. 531–538.

[11] M. Brandao, R. Ferreira, K. Hashimoto, J. Santos-Victor, and
A. Takanishi, “Integrating the whole cost-curve of stereo into occu-
pancy grids,” in 2013 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. IEEE, 2013, pp. 4681–4686.

[12] R. A. Newcombe, S. Lovegrove, and A. Davison, “Dtam: Dense
tracking and mapping in real-time,” in 2011 IEEE International
Conference on Computer Vision (ICCV), 2011, pp. 2320–2327.

[13] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[14] H. Hirschmüller and D. Scharstein, “Evaluation of stereo matching
costs on images with radiometric differences.” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1582–99,
Sept. 2009.

[15] L. Matthies and M. Okutomi, “A Bayesian foundation for active stereo
vision,” Proc. SPIE Sensor Fusion II: Human and Machine Strategies,
pp. 1–13, 1989.

[16] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2012, pp. 3354–3361.


