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Abstract—We describe our recent developments in probabilis-
tic modeling of 3D reconstruction with stereo vision, applied to
planning strategies for locomotion and gaze. We first overview
the use of probabilistic occupancy grids for 3D reconstruction,
and the sensor models of stereo best suited to the problem. These
grids are then used for robot navigation, which is tackled at two
levels: 1) At the locomotion level, trajectories are computed from
the grid using an A* search algorithm that minimizes the total
probability of occupancy over the trajectory. 2) At the grid level,
we propose two task-relevant active strategies which redirect the
sensor to ”maximum visible entropy” and ”maximum visible
occupancy” points along the planned locomotion trajectories.
Steps 1) and 2) are executed alternately until the locomotion
trajectory converges to a high certainty, safe solution.

Results of the proposed gaze and locomotion planning strate-
gies were obtained on simulated scenarios and a real robot. Esti-
mates of the uncertainty that occupancy grids are subjected to in
real outdoor scenarios were computed for different stereo sensor
models. These estimates were used in active gaze simulations for
an extensive comparison of gaze strategies across 400 randomly
generated environments. The results show that careful modeling
of stereo vision sensor uncertainty and the proposed task-relevant
planning strategies lead to more complete and consequently
collision-free reconstructions of the environment along planned
robot trajectories.

I. INTRODUCTION

In order to navigate environments safely, robots require
accurate models of their sensors and reliable strategies for
planning locomotion and gaze trajectories. Gaze, or sensor
orientation, can be especially useful when the robot’s sensors
have a narrow field of view such as stereo sensors (i.e. two
cameras). In such cases, only a part of the space around the
robot can be sensed at each time and so measures must be
taken in order to reduce the uncertainty of the environment and
probability of collision. Researchers have, however, focused
mainly on active gaze strategies for the localization [1], [2] and
exploration [3], [4], [5], [6] tasks, which could lead to poor
safety of planned trajectories. Robots with complex dynamics
such as humanoids robots require special care during planning
since they can be slower to respond to a sudden obstacle
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Fig. 1. The KOBIAN humanoid robot faces an obstacle which is not
sensed due to narrow field of view. How should the uncertainty of the current
measurement be modeled? When walking up to its goal, where should the
robot gaze to?

and unstable if collision occurs. We argue that if safety is
to be prioritized, then gaze should be guided to points along
the current trajectory plan until the probability of collision
is negligible [7]. Other recent work focusing on active gaze
for obstacle avoidance include autonomous policy learning
methods [8] and utility theory-based planning [9]. However,
either sparse environment representations or limited sensor
models were used, which can also lead to unsafe trajectories
being generated.

Both reliable environment representations and sensor mod-
els are required so that uncertainty of the environment can
be estimated and exploited for guiding gaze. In this paper we
overview the use of probabilistic occupancy grids for mapping
(i.e. 3D reconstruction) of the environment, as well as the
sensor models of stereo that can be used with such recon-
struction approach. This is discussed in Section II. Occupancy
grids [10] are not only useful for robot trajectory planning,
but also provide an environment uncertainty measure in a
straightforward way. We then introduce locomotion planning
and active gaze strategies that focus on safety of the robot by
minimizing collision probability (Section III). The methods



were evaluated on both real data and simulated environments.
Experiments with occupancy grids are discussed in Section
IV, while active gaze experiments are reported in Section V
and VI.

II. UNCERTAINTY-BASED MAPPING WITH STEREO AND
GRIDS

Consider a three-dimensional grid of cells which can be
in one of two states: occupied O or free O. The objective
of an occupancy grid algorithm is to compute or update the
probabilities p(Oi|e0...t, x0...t) for each cell i, at each time
instant t, given measurements e0...t and sensor locations x0...t

until time t. This is implemented as a Bayes filter at each
cell, which updates occupancy probabilities every time a new
measurement is taken [11].

Uncertainty of the binary random variables Oi can be
measured using Shannon entropy:

hi = −pilog(pi)− qilog(qi) (1)

where pi = p(Oi|e0...t, x0...t) is the probability of occupation
of that cell and qi = 1− pi.

A measurement et can consist, for example, of a set of rays
from a laser rangefinder. Each ray is in turn associated to a
distance of the nearest object. In the case of stereo vision et
corresponds also to a set of rays, but each ray is associated to a
pixel in one image and a cost function of distance. Probability
of occupancy at each distance can be computed directly from
these cost functions, as described next.

A. Occupancy grid formulation

We recently proposed a novel occupancy grid framework
which integrates all information returned by stereo vision
measurements into occupancy grids [12]. Briefly, we proposed
to compute occupancy of a cell i as

p(Oi|E) = p(Oi|EVi)p(Vi|E) + p(Oi|EV i)(1− p(Vi|E)),
(2)

where E represents a cost-function of distance taken along
the ray which intersects cell i. Vi = Oi−1...O2, O1 represents
visibility of cell i. Under the assumption that Oi and the
measurement E are conditionally independent on invisible
cells V i, we have p(Oi|EV i) = p(Oi|V i). For sake of
readability and compactness, the equations shown here are for
a one-dimensional grid aligned with the sensor - correspondent
to the intersection of a camera ray with the three-dimensional
grid. Bresenham’s line algorithm [13] in 3D can be used to
efficiently compute the set of discrete cells along the ray from
cell i to the sensor origin. In the original publication we also
showed that

p(Vi|E) =
∏

j=0...i−1

p(Oj |EVj), (3)

where p(Oj |EVj) = 1 − p(E|OiVi) holds under certain
assumptions. Equation (2) is then reduced to the computation
of the following models (and their complements):
• p(E|OiVi). The probability of measuring costs E given

cell i is both occupied and visible.

• p(Oi|Vi). A prior on the environment geometry. We
empirically set the prior equal to 0.5 in our experiments
so that occupied and free cells are equally probable.

B. Stereo vision

Consider two images I1 and I2, aligned along the x axis.
In stereo vision, the cost-curve E(d) of assigning I2(x, y) to
I1(x+d, y) is computed at each pixel (x, y) and d is called the
disparity. In perfect conditions (i.e. no image noise, occlusion,
discontinuity or sampling problems), the cost-curve E(d) has
its minimum dmin at true disparity d∗.

The conditional probability p(E(d)|d = d∗), or alternatively
p(E(d)|OiVi) in grid terms, is called the direct sensor model
and can be formulated in either a winner-take-all or whole-
cost-curve way.

1) Whole-cost-curve (WCC) model: The conditional prob-
ability function of measuring E(d) at true disparity d∗ can be
defined assuming a normal distribution of costs [14],

p(E(d)|d = d∗) ∝ e
− E(d)

2σ2px , (4)

where σ2
px represents the variance of pixel intensity noise.

Although out of scope of this paper, different confidence
measures also exist to compute p(E(d)|d = d∗). For a
thorough review please refer to [15]. In that review, (4) ranks
within the highest confidence measures considering the whole
cost-curve.

2) Winner-take-all (WTA) model: The WTA model is ar-
guably the most popular one in stereo, although it originates
from laser rangefinder sensors that measure distances to targets
instead of costs for each possible distance. This model thus
depends only on the least-cost disparity dmin. Depending on
the literature, the shape of E(d) around dmin (i.e. the curvature
of the minimum) is used as a measure of uncertainty. This
approximate model is given by

p(E(d)|d = d∗) ∼ N (dmin, σ
2
d), (5)

where σ2
d represents the variance of a disparity measurement,

which is either fixed or could be a function of the curvature
at E(dmin).

III. SAFETY-CENTERED PLANNING WITH UNCERTAINTY

A. Robot trajectory planning

The trajectory of a robot from its initial state to a target state
can be computed from the occupancy grid such as to minimize
occupancy probability (i.e. collision probability) along this
path. Such an approach focuses on safety of the robot. To
reduce the complexity of the problem, a 3D grid can be
projected into a 2D top-view map where each cell’s value
corresponds to the maximum probability of occupation along
the vertical axis. In this work we opted for an A* approach
[16] to the search problem. We chose this method for its
simplicity, although other more efficient approaches could be
used. We use a set of predefined robot motions to build the
search graph, adjusted to the motion capabilities and limita-
tions of our robot such as maximum turning angle. The cost



Fig. 2. Two examples of simulated scenarios with regions of different
occupancy probability. The brighter the pixel the higher the occupancy
probability. Trajectory nodes explored (closed list of the A* algorithm) are in
cyan and final solution in red. With this approach we look for minimum cost
trajectories preferring regions with low occupation probability.

associated to a certain motion is set as to grow exponentially
with occupancy probability of the cells it traverses. The Euler
distance multiplied by the minimum motion cost (occupancy
P = 0) was used as a heuristic for the cost to the goal. The
result is exemplified in Figure 2.

For planning purposes it is useful to consider the robot as a
point in the grid and hence obstacles are dilated according to
the robot’s dimensions. Here we keep the grid probabilistic,
without classifying cells into occupied or free. Therefore the
grid can be dilated by taking for each grid cell the maximum
of occupancy probability in the robot’s area around that cell.

B. Safety-centered active gaze: next-best-view strategies
The occupancy grid framework can also be used to guide an

active policy for reducing uncertainty of the robot trajectory.
We propose to use next-best-view strategies to lower the
chance of collision between robot and environment, thus
increasing the robot’s safety. The purpose of these strategies
is to

minimize

(
1−

∏
k∈K

p(Ok|e0...t+∆t, x0...t+∆t)

)
, (6)

where K is the set of cells intersected by the robot trajectory
and ∆t represents the time it takes for the robot to execute
the gaze command. Robots with controllable gaze direction
can thus actively use it such that the expected value of
collision probability is lowered. Empirically, occluded regions
should not be gazed at because they will not lead to new
measurements on the occluded area. Priority should go to
visible cells of higher uncertainty or occupancy probability, so
that this information can be confirmed or denied: and the robot
trajectory plan consequently adjusted. In this paper we will
focus on the following greedy formulations of the problem.

1) Maximum visible entropy: Gazing point will be cell g,
such that

g = argmax
k∈K

p(Vk|e0...t+1, x0...t)hk. (7)

2) Maximum visible occupancy: Gazing point will be cell
g, such that

g = argmax
k∈K

p(OkVk|e0...t, x0...t). (8)

Both formulations are greedy in the sense that they attempt
to minimize uncertainty only of the points along the current
trajectory which are most likely to contribute to a safer
trajectory after measurement and re-planning. These are thus
purely exploitation strategies, where in turn exploration is
guided by robot trajectory planning itself. When a new plan
leads to unexplored cells being traversed, their uncertainty or
occupancy probability will be high and thus gazed at by the
greedy gaze strategies. The process can go on until no new
gaze points are generated (local minimum), or until a certain
trajectory safety threshold is reached.

In the experimental section we will also evaluate simplified
versions of (7) and (8), where visibility is not considered (i.e.
all cells are considered visible). We call these two strategies
”maximum entropy” and ”maximum occupancy” respectively.
The former was originally introduced by us in [7].

IV. OCCUPANCY GRID EXPERIMENT: THE WTA AND WCC
MODELS

We first report on an experimental evaluation of the occu-
pancy grid method. For this evaluation we used the publicly
available KITTI dataset of outdoor stereo images [17]. The
real-world, noisy stereo measurements and localization data
in this dataset provide a challenging scenario for 3D recon-
struction.

To measure the performance of our occupancy grid method
we used the precision and recall ratios of the grid’s cells.
Precision is defined as tp

tp+fp , where tp (true positives) refers
to the number of cells correctly classified as occupied (i.e.
occupancy P > 0.5) and fp (false positives) refers to the
number of cells incorrectly classified as occupied. On the other
hand, recall is defined as tp

n , where n refers to the total number
of occupied cells on ground-truth data.

We ran the probabilistic occupancy grid algorithm on the
KITTI residential area dataset ”2011 09 26 drive 0079” us-
ing a grid of cubic cells with dimensions 0.20x0.20x0.20
meters. In Figure 3 we show the reconstruction performance
along time when both the WTA and WCC stereo models
were used. The data shown were obtained using a Sum of
Squared Differences (SSD) with 9x9 window size as the cost
function E(d). The whole-cost-curve model of stereo achieved
higher performance at the cost of lower recall. We also point
to the ascending precision which is observed as more stereo
measurements are taken, which shows that the occupancy grid
method can correctly fuse the noisy uncertain measurements
into a coherent and precise representation. Other promising
results were also recently reported in [12].

The initial precision and recall ratios will be used in our
active gaze simulation experiment in Section VI to model the
noise our method is subjected to on real environments.

V. ACTIVE GAZE EXPERIMENT 1 - PROOF OF CONCEPT ON
ROBOTIC PLATFORM

As we discussed in Section III-B it is important to actively
control gaze (i.e. sensor) orientation in order to decrease
uncertainty on an occupancy grid, especially so along the
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Fig. 3. Precision and recall of the obtained occupancy grid along time, for
both a WTA and WCC stereo model. Each marker represents the update of
the grid after a new stereo measurement. The last measurement is indicated
with the word ”Last”.

planned robot trajectory. Our first active gaze experiment was
originally presented in [7] and involves testing the introduced
algorithms on a real robotic platform. The environment was
carefully designed such that several gaze actions would be
required in order to reconstruct all obstacles present between
the robot and target. A naive gaze strategy such as target
fixation would lead to certain obstacles being unnoticed and
to a collision, were the planned trajectory to be executed.

A. Experimental setup

We tested the occupancy grid method and the ”maximum
entropy” gaze strategy on the biped humanoid robot platform
KOBIAN [18]. KOBIAN is 1.4m tall, weighs 62kg and has
a total 48 DoF. The vision system uses two CMOS cameras
working at a 30Hz acquisition rate. Camera images were used
at a 320x240 pixel resolution.

In this experiment the dimensions of the occupancy grid’s
cells were set according to the physical dimensions of the
robot. Having in mind the average step size of the robot,
we used cubic cells of 0.15x0.15x0.15 meters. Occupied
cells were dilated taking into account the robot’s dimensions
(approximated as a 2D square of 0.60 meters each side) so that
the robot can be represented as a single cell in the grid. The
WTA stereo model was chosen for slightly faster computation.
For a comparison of computation times please refer to [12].

The tested scenario is as follows: the robot stands in a
room looking forward, having a target where it has to walk
to, fixed in the world (3m ahead, 2m to the left). Between
the robot and the target, some common obstacles such as
chairs were placed. The proposed algorithm is started once the
robot is on the floor, successfully generating gaze targets along
the trajectory. All was generated online and automatically
without human intervention. The duration of the experiment
was approximately 1 minute.

B. Results

Figure 4 shows the camera image sequence and occupancy
grid results for this experiment. Even though certain obstacles
were not initially visible, the robot successfully managed to
find a safe (i.e. collision free) trajectory after 3 gaze actions.
As seen in the figure, gaze targets were lower than the starting
one. This is due to the narrow field of view of the stereo
sensor that leads to regions closer to the floor not being sensed
in the beginning (the robot looks straight ahead). A constant
gaze at the target, however, which is a common strategy in
robot navigation through visual servoing [19], would lead to
unnoticed obstacles being ignored and a thus a high chance
of collision, as we reported in [7].

VI. ACTIVE GAZE EXPERIMENT 2 - EXTENSIVE
EVALUATION IN SIMULATION

On a second and new experiment we developed a simulation
system so that an extensive and significant evaluation of the
active gaze strategies could be taken across a large number of
random environments.

A. Experimental setup

Our simulation system consists of a computer program that
simulates noisy sensor measurements and perfect gaze actions
that instantly update the sensor orientation. The following
functionalities were implemented.

1) Randomly simulated environments: A total of 400 differ-
ent random environments was generated for evaluation. Robot
starting and target points were set constant and 15 meters
apart. At each environment, 100 random squared obstacles are
generated with the constraint of minimum distance of 1 meter
to both the robot starting and target points. Obstacles have
a random height of up to 0.75m and random side of up to
3 meters. Two of the generated environments are shown in
Figure 5 with color-encoded obstacle height.

Fig. 5. Top-view of the random environments number 0 and 1, out of the
set of 400 used for evaluation. Squares represent obstacles that are higher as
their color gets closer to red (red is robot height, green is 0 height). Trajectory
solution is shown in blue, the green circle represents the robot and the cross
represents the target.

2) Gaze strategies: We implemented a total of 6 gaze
strategies, which were run on the same scenarios. Besides the
strategies defined in equations (7) (8) and their unconstrained
visibility versions, we implemented a ”random gaze” strategy
and a ”fixate target” strategy. Random gaze generates a random



Fig. 4. Results of the ”maximum entropy” gaze strategy. Top: Right camera image; Bottom: 2) Occupancy grid (projected to 2D and dilated to robot
dimensions). Egocentric representation: vertical direction in the image corresponds to current sensor direction. Black is probability of occupation P=0 and
white P=1, generated trajectory blue, and gaze target cyan point. From left to right: frames 112, 208, 310, 417, 523.

sensor orientation within physical limits at each instant of
time, while the target strategy simply keeps the robot gaze
at the target throughout the whole experiment.

3) Measurement model: We implemented a measurement
model that updates the occupancy grid after each (simulated)
gaze command is executed. The grid is updated at all cells
lying inside the sensor field of view (FOV). In these exper-
iments, we selected a narrow FOV of 60 and 40 degrees in
the horizontal and vertical axis respectively. At each cell i,
the sensor measures either p(Oi|E) = 0.4 or p(Oi|E) = 0.6
depending on whether a ”free” or ”occupied” contribution is
measured, respectively. The sensor is assumed to provide noisy
measurements that lead to a false-negative ratio fn and false-
positive ratio fp of cell classification. In other words, occupied
cells receive an occupancy probability p(Oi|E) = 0.4 with
fn chance, while free cells receive p(Oi|E) = 0.6 with fp
chance. Visible cells will get a correct measurement with
(1−fp) and (1−fn) rates. Visibility is taken from the ground-
truth map (i.e. the randomly generated map) by line drawing
using Bresenham’s line algorithm. We selected fp = 0.01 and
fn = 0.77, which correspond to the values of precision and
recall obtained on the real outdoors dataset, reported in Section
IV.

B. Results

Each gaze strategy affects the safety of the trajectory
differently along time. For each strategy we computed the
safety s(t) of obtained trajectories as the average probability
p(Ok|e0...t, x0...t) for cells k along that trajectory. In Figure
6 we show the average safety s(t) of generated trajectories,
averaged over all random maps for each gaze strategy. We also
show the actual probability of collision over time, obtained by
counting at each instant of time the number of maps where
the trajectory collides with obstacles in the ground-truth map.
The data clearly show that on average the active gaze strategies
here discussed lead to robot trajectories that are safer than a
random gaze strategy at all times, and safer than a ”gaze at
target” strategy after less than 5 gaze actions. The figure also
shows that considering visibility of cells during gaze selection
slightly improves s(t).
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Fig. 6. Comparison of the several active gaze strategies. Top: Average
safety s(t) of the generated trajectories along time. Maximum safety is
s(t) = 1. Bottom: True probability of collision of the trajectories, computed
from ground-truth. Values are averaged across the whole set of random
environments at each instant of time.

We finally show, in Figure 7, results of the simulated grid
algorithm and planned trajectory for the ”maximum visible
occupancy” strategy on an example random environment. In
this experiment, the average safety s(t) of the generated
trajectory goes from 0.5 at the initial condition to 0.63, 0.77,
0.82, 0.88 and finally 0.93 at 5th gaze action. Similarly to
the proof of concept experiment in Section V, gazing actions



Fig. 7. Grid and robot trajectories at each instant of time, when the ”maximum visible occupancy” gaze strategy is used. Random environment number 0.
The brighter the pixel the higher the occupancy probability. Trajectory solution is shown in blue, the green circle represents the robot and the cross represents
the target.

successively lead to new obstacles being found and trajectories
re-planned until a safe path is obtained. A safe collision-free
path is obtained by the end of the 3rd gaze action.

VII. CONCLUSION

In this paper we introduced a set of methods that deal
with stereo sensor uncertainty during robot navigation, with a
special focus on robot trajectory safety. We proposed methods
for stereo mapping (winner-take-all and whole-cost-curve oc-
cupancy grids) and methods for planning gaze and locomotion.

We obtained estimates of the uncertainty that occupancy
grids are subjected to in real outdoor scenarios and showed
that WCC stereo sensor models can lead to higher precision
maps than WTA, at the cost of lower recall. We empirically
showed, on a real robot, that gazing at maximum entropy
points along the planned robot trajectories is an efficient way
to exploit occupancy grids to increase safety and confidence on
a trajectory. We also validated this observation with extensive
simulation on random environments. Several gaze strategies
were compared, of which the ”maximum visible entropy” and
”maximum visible occupancy” scored best on average. With
these strategies, highest safety trajectories were obtained in
less than 5 gazing actions for a narrow sensor of 60 by 40
degrees field-of-view.
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