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Abstract— Complex robots such as legged and humanoid
robots are often characterized by non-convex optimization
landscapes with multiple local minima. Obtaining sets of these
local minima has interesting applications in global optimization,
as well as in smart teleoperation interfaces with automatic
posture suggestions.

In this paper we propose a new heuristic method to obtain
sets of local minima, which is to run multiple minimization
problems initialized around a local maximum. The method
is simple, fast, and produces diverse postures from a single
nominal posture. Results on the robot WAREC-1 using a
sum-of-squared-torques cost function show that our method
quickly obtains lower-cost postures than typical random restart
strategies. We further show that obtained postures are more
diverse than when sampling around nominal postures, and that
they are more likely to be feasible when compared to a uniform-
sampling strategy. We also show that lack of completeness leads
to the method being most useful when computation has to be
fast, but not on very large computation time budgets.

I. INTRODUCTION

Finding sets of alternative locally optimal postures is an
important problem in robotics. One of the motivations to
explore this problem can be to increase robot efficiency by
finding lower-cost postures. Another interesting application
is teleoperation. See Figure 1 for an example. The idea is to
provide these locally-optimal postures to an operator: to help
jump-starting motion design, or for the operator to choose
from according to his intuition. While posture generation
algorithms already exist, they converge to a single local
minimum and have problems with infeasible initializations
[1], [2]. Exploration is usually done through perturbations
around a nominal posture or through random uniform sam-
pling, which can either lead to too few or too much variation
in the produced outputs. This paper is an attempt to alleviate
these issues. Our contributions are the following:

o We introduce a new heuristic algorithm to obtain sets
of locally optimal robot postures, which consists of
minimization with multi-starts around a local maximum

o We give an intuition for why the heuristic makes sense
using the example of the robot WAREC-1 [3]
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Fig. 1. Generating postures on different local minima of a cost function.
Applications to global optimization and teleoperation interfaces (e.g. pro-
viding multiple low-cost alternative postures for a teleoperator to jump-start
posture design).

o We qualitatively and quantitatively evaluate the algo-
rithm in terms of diversity of solutions, success rates
and minimum costs obtained

o We discuss when the algorithm compares favorably to
other exploration methods, as well as when it ceases to
do so.

II. RELATED WORK

The problem of generating multiple robot postures satis-
fying a task, for example for robot teleoperation interfaces,
is closely related to the problem of character animation in
computer graphics. The focus there is usually on making pos-
tures and motion human-like, by biasing inverse kinematics
towards human postures obtained in motion-capture systems
[4], [5]. For example, [5] learns a latent space of motion-
capture motion which is sampled during motion generation.
A more recent example is that of [6], where a manifold
of human locomotion is learned using a convolutional auto-
encoder and then used for motion synthesis and to constrain
an animator’s motion to look natural. On the other hand, in
robotics there are high requirements on the energetic cost of
the motion, and thus even if a certain posture appearance is
desired, a cost function such as torques, battery consumption
or other usually needs to be locally minimized [7]. With
this in mind, in this paper we take a slightly different look



at the problem of generating postures for a task, compared
to the graphics literature, which is to obtain postures on
local minima of the desired cost function within some
distance of a nominal posture. So while a teleoperator may
want “natural” postures, we focus on sampling those which
are locally optimal in some energetic sense. Furthermore,
recent findings show that optimizing energy consumption in
humanoid robots may actually lead to human-like motion [7],
which suggests that our approach of generating postures on
local minima might coincidently lead to human-like postures
on humanoids. We will qualitatively see that this is the case
in Section IV-A.

In the robotics community, several optimization algo-
rithms for posture generation and motion planning have been
proposed. These algorithms are local, based on sequential
quadratic programming [1], projected gradient descent [2]
and others. Since they are only local, they are often prone
to get stuck at infeasible local minima or not to explore
other lower cost alternatives. Some algorithms [2], [8], add
noise to the optimization process to promote exploration.
Others use multi-starts (e.g. random restarts) from different
seeds and pick the lowest-cost trajectory [1], [9]. Similarly,
in sampling-based motion planning such as RRTs [10] and
PRM variants [11], robot configurations are typically sam-
pled uniformly within joint limits or close to a nominal
posture. Uniform sampling can take too long to find a
feasible posture, however, and sampling around a nominal
posture may be too conservative or require much tuning until
the right amount of exploration is obtained. Our approach to
the problem of generating multiple postures at local minima
tries to do so within close distance of nominal postures,
while removing the need of tuning exploration radius for
decent performance, and still doing it quickly. We do so by
sampling from a local maximum, which has the advantage
that any small perturbation is enough to produce a descent.
On highly-nonlinear functions such as those in legged and
humanoid robots, our sampling strategy will usually produce
a different direction of descent each time, and thus lead to
discovering more local minima within the neighborhood of
preferred postures. Our algorithm is therefore more likely
to quickly find diverse postures for a teleoperator, or for
reducing final cost on a motion planner.

III. METHOD
A. Problem

In this paper we consider posture generation problems of
the form

o !
minimize f(q) €))
subject to g(q) =0

h(g) <0,

where ¢ € R¥ are the degrees of freedom (DOF) of the
robot, and the cost function f(g) is non-convex with multiple
local minima. For convenience we can equivalently write (1)
as
minimize
qeC

f(a), 2
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Fig. 2. Optimization landscape around a nominal posture, when varying
the shoulder roll and pitch joint angles. X-Y axes are in degrees. f is the
sum of squared joint torques.

where the set C C RX is the intersection of R¥ with
constraints g and h.

We wish to find multiple local minima of (2), in order to
either use the lowest-cost minimum found or to display the
different solutions for an operator to choose from.

B. Maximize-perturb-minimize

To motivate our algorithm, take for example the robot
WAREC-1 [3], shown in Figure 2. The robot is standing on
its nominal posture, and its shoulder roll and pitch joints are
moved within their limits. Using a typical sum-of-squared-
torques cost function, f(q) = >, 7i(¢q)?, the figure shows
one local minimum and one local maximum in the interior
of the set (corresponding to vertical arm pointing up, and
horizontal arm, respectively). There are also other local
minima and maxima at the boundaries of the set (e.g. vertical
arm pointing down).

Note that depending on the size of the basin of attrac-
tion, looking for solutions around a nominal posture might
lead to always finding the same local minimum or another
minimum immediately next to it. However, around a local
maximum different directions point towards different local



minima, even for the slightest perturbation. This observation
motivates the following algorithm: to sample points around
local maxima as initializations for (2) in order to obtain
different local minima.

We then propose to solve (2) using the following Algo-
rithm 1.

Algorithm 1 Maximize-perturb-minimize

input: qg, o2
Solve § < argmax  f(q), initialized from gq
c

qe
for Samplinglteration s <— 1,2,..., N do
Sample gs « G+ N(0,I0?)
Solve ¢¥ + argmin f(gq), initialized from g

qeC
end for

output: g7, ..., g5

Note that Algorithm 1 involves only one extra maximiza-
tion in the beginning, when compared to a strategy such as
multi-starts around a nominal posture. In addition to that, any
o2 > 0 will suffice to find different directions of descent and
hence different critical points. On the other hand, sampling
around a nominal posture requires more tuning such as to
make o2 large enough to promote exploration away from
the closest local minimum.

One assumption of this algorithm is that a local maximum
exists on a path between local minima. Note that this need
not be the case, since multivariable functions in general
can have multiple minima and no other critical points'. In
practice, however, we did not observe such problems in our
experiments.

C. Baselines for comparison

We compare our algorithm with common sampling strate-
gies for optimization with multi-starts:
1) Nominal-posture-sampling: g5 < ¢"™" + A/(0, Io?)
2) Uniform-sampling: ¢ < unif(qmin, gmax)
where o2 is a parameter, and guin and Guax are joint limits.

D. Implementation

We solve (2) with a trust-region-based Sequential
Quadratic Programming (SQP) algorithm, TrajOpt [1], which
is openly available’>. We use Gurobi as the QP solver.

IV. RESULTS

A. Teleoperation application: qualitative evaluation of pos-
tures

We first evaluate our algorithm qualitatively, by checking
whether it can find multiple local minima with qualitatively
diverse postures. The application we have in mind is tele-
operation, such as software that will automatically suggest

UIf a single variable function has two local minima then a local maximum
must exist. However, that is not the case for multivariable functions [12]. It
can be proven by counter-example: f(z,y) = (z? —1)2 + (22y —x —1)2
has two local minima and no other critical points.

Zhttp://rll.berkeley.edu/trajopt/

alternative low-cost postures for an operator to choose or
start editing from. We assume the operator has given a nom-
inal posture which indicates a usual, preferred or reference
configuration of the robot. This is to guide the generation
procedure, so that postures are still sensible (e.g. standing,
not crossing arms or legs, not upside down) and look natural.

We choose a typical cost function, the sum of squared joint
torques f(q) = >.,77(q), on the WAREC-1 robot model
using the nominal posture shown in Figure 2: standing with
both arms down.

We first run our algorithm and the baselines on a simple
scenario with no obstacles. The constraints in the optimiza-
tion problem are: joint limits, two (6D) feet pose constraints,
no-self-collision and ZMP inside of the support polygon.
We use a signed-distance function for collision avoidance
computed on the robot’s links’ meshes using Bullet [13] as
implemented in TrajOpt [1]. To make evaluation fair, we run
all algorithms for the same amount of time, 30 seconds, and
then collect the feasible postures which were generated by
each during that interval. The results of nominal-posture-
sampling are quite sensitive to the perturbation parameter o,
and so we report results with a value that gave us best results
on average: o = 20 degrees.

Figure 3 shows 10 of the first solutions obtained by
each algorithm on a 30 second budget. The figure shows
that results obtained with our algorithm, to which we
will call Max-o-Min for short, are visually more diverse
than nominal-posture-sampling. They are visually close to
nominal posture (see Figure 2), but the arms are raised
and dropped in different ways such as to reduce torque
consumption. Remember that static torques are minimum
when joint motion around that posture will lead to minimum
mass displacement on the direction of gravity (i.e. they
will be “relaxed” postures). Nominal-posture-sampling finds
visually similar postures, where differences are mainly in
yaw rotation of hands, bending the trunk to one side or
to the other, etc. Note that the reason why postures are
bent down is that there is one very-low-cost posture which
is quadruped with all arms vertically pointing down, and
the gradient of torques from the nominal posture points in
that direction. However, the task we chose is bipedal and
the ZMP constraint makes such a stretched quadrupedal
posture infeasible (i.e. the COM would go out of the support
polygon). Our algorithm also discovers this posture, but is
not limited to it. The uniform-sampling algorithm also finds
diverse postures since it samples within joint limits. While
qualitatively it is difficult to say which postures would be
most useful to a teleoperator, our algorithm’s are closer
to nominal and more natural (they look like stretches and
crouches) than uniform-sampling - which looks random.

Another difference between algorithms is the number of
postures found within the 30 second budget. Max-o-Min
obtained 28 feasible local minima, nominal-posture-sampling
obtained 30, and uniform sampling obtained 10. This shows
a clear disadvantage of uniform sampling: that it is difficult
for it to find feasible postures on a limited time budget.
This is intuitive, since sampling anywhere from the joint
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Fig. 3.

Ten of the first postures generated by our algorithm and two baselines, on a 30 second time budget. Simple scenario without obstacles. Cost is

sum-of-squared-torques, constraints are feet poses, joint limits, no-self-collision, ZMP.

Fig. 4. Postures corresponding to a local maximum of the sum-of-squared-
torques. Two scenarios: no obstacles and one obstacle (a bar).

limits can lead to postures which are too far away from
the task constraints for SQP to find a feasible solution. For
example, sampled postures can be in self-collision, and some
constraints may have gradient directions that cancel out.
Our algorithm and nominal-posture-sampling both generate
a similar amount of postures since they both sample close
to nominal (although ours samples from the local maximum
closest to nominal). Our algorithm generates two less pos-
tures since it has to spend some computational time in the
beginning to do one maximization.

We show the result of the maximization in Figure 4:
it is a posture with arms wide-open. The figure makes
it clear why qualitatively different postures are obtained:
small perturbations around the posture may lead one or both
arms in different directions which will then be attracted by
different minima: some to the top and some to the bottom
of the robot.

Next, we consider a scenario with an obstacle on one of
the sides of the robot, such that one of the arms will have to
avoid it during the maximization stage (and thus a different
local maximum is sampled from). We show this maximum on
Figure 4 as well. The posture still raises both arms although
one is not raised as high as before. We ran our algorithm

and baselines on this scenario for a budget of 30 seconds,
and we show 10 of the postures on Figure 5.

In this second scenario, our algorithm once again finds
qualitatively different postures, when compared to nominal-
sampling, although the “both arms up” posture is not found
even though it is possible - because it is too far from the local
maximum which we use for sampling. Still, the algorithm
discovers arm-waiving, crouching, and a posture where the
obstacle is “embraced”. Nominal-sampling was again low-
variance, while uniform-sampling was high variance but
often unnatural. Uniform-sampling actually produced similar
obstacle-embracing postures which could be of use to a
teleoperator. Its main disadvantage is that it unfortunately
relies on getting “lucky” to obtain interesting postures. One
important observation from this figure is that all methods
discovered local minima which embrace the obstacle with
the arm. This observation further motivates our intuition that
using local minima could be an effective way to suggest
robot postures to an operator on a teleoperation interface.
The obstacles impose new local minima on the feasible
space which change the postures that optimization methods
are attracted to. This reminds us of the concept of object
affordances [14], which says that objects call or attract us to
do certain actions.

B. Cost minimization

We now turn to analyzing our algorithm in terms of use-
fulness in global optimization, which corresponds to picking
out the least-cost solution out of all solutions found with
multi-starts.

To evaluate algorithm performance we computed the min-
imum cost over all solutions obtained on a time budget. We
varied the maximum allowed computation time from 5 to
90 seconds, and for each choice of computation time we
ran 50 experiments with different random number generator
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Fig. 5. Ten of the first postures generated by our algorithm and two baselines, on a 30 second time budget. Scenario with one obstacle on the side of the
robot. Cost is sum-of-squared-torques, constraints are feet poses, joint limits, no-collision, ZMP.
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Fig. 6. Average cost and success rate (of finding feasible local minima)

as a function of computation time budget. Each point is an average over 50
randomized experiments.

seeds. Figure 6 shows the averaged results on both the simple
and obstacle scenario. The graphs show that our algorithm
is advantageous for short time budgets. Up to around 50
seconds our algorithm obtains the lowest cost on average.
The success rate (number of times that a feasible posture was
found) was also higher until around 50 seconds. Surprisingly
nominal-posture-sampling also had lower success rates than
our algorithm, which shows that a lack of exploration can
lead to consistently finding infeasible postures. After around
50 seconds, however, the advantages of our method start to
disappear as all algorithms eventually are able to find both
feasible and similarly-low-cost minima in the long run. In a
context of large computation time budgets, uniform sampling
is probably a better option than our algorithm due to its high

exploration capabilities - both for global optimization and
varied suggestions for teleoperators.

V. CONCLUSIONS

Finding multiple local minima in posture generation has
the potential of improving robot performance through cost
minimization, as well as interesting applications in robot
teleoperation and animation.

In this paper we proposed a method to quickly generate
postures lying on local minima of a cost function. The
method is simple yet efficient in terms of variability of
obtained postures and lowest obtained cost. It consists on
first maximizing a cost function from a nominal state, and
then running the original optimization algorithm with multi-
starts around the local maximum. It relies on the intuitive
idea that around a local maximum, even small perturbations
can lead to gradients with very different directions. The
postures generated are diverse yet still qualitatively close to
given nominal postures. Quantitatively, the method obtains
lower-cost postures in shorter computation times than other
reasonable baselines such as optimization with multi-starts
from samples around a nominal posture, or also from uniform
samples within joint limits.

In our experimental results we concluded that our al-
gorithm’s advantages are stronger when there are short
time constraints for the optimization. The advantages in
terms of success rate and minimum cost found disappear
as computation time budgets increase to around 1 minute.
From then on, sampling from a uniform distribution might
still be a better choice for obtaining better local minima or
qualitatively diverse postures for teleoperation. However, at
least for teleoperation purposes, some other algorithm should
be used together with uniformly-sampled-multistarts such as



to reduce the amount of postures to show to an operator, for
example through clustering.

Interestingly, we found that local minima may make for
natural posture suggestions for teleoperation. On a simple
scenario without obstacles our algorithm obtained diverse
natural looking postures such as waving, crouching, and
both-arms-up. When we introduced an object, a wide local
minima was created consisting of postures embracing it
(which was discovered by all algorithms). This reminded
us of the affordance theory [14] of objects which call for
certain actions, hence being a potentially interesting tool
for automatic suggestion of postures and actions for robot
operators.

Two most related fields to this paper are that of global op-
timization and optimization with metaheuristics. The method
we use here, random restarts, has a long history and is widely
studied [15], but many other global and heuristic algorithms
have been proposed in the literature, from simulated anneal-
ing to Monte-Carlo [2], evolutionary methods [16], learning
and solution databases [17], etc. Here we focused on one of
the most popular in the robotics field, due to its simplicity,
low computational time and any-time nature: multi-starts [1],
[9]. One interesting direction of research is to compare our
fast heuristic with other global algorithms.

Other possible directions include the use of explicit regu-
larizers to keep exploration close to nominal posture(s), and
actually integrating these methods into robot interfaces.
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