Explaining Path Plan Optimality: Fast Explanation Methods for Navigation
Meshes Using Full and Incremental Inverse Optimization

Martim Brandao, Amanda Coles, Daniele Magazzeni

King’s College London, UK
{martim.brandao, amanda.coles, daniele.magazzeni } @kcl.ac.uk

Abstract

Path planners are important components of various products
from video games to robotics, but their output can be counter-
intuitive due to problem complexity. As a step towards im-
proving the understanding of path plans by various users, here
we propose methods that generate explanations for the opti-
mality of paths. Given the question “why is path A optimal,
rather than B which I expected?”, our methods generate an
explanation based on the changes to the graph that make B the
optimal path. We focus on the case of path planning on navi-
gation meshes, which are heavily used in the computer game
industry and robotics. We propose two methods—one based
on a single inverse-shortest-paths optimization problem, the
other incrementally solving complex optimization problems.
We show that these methods offer computation time improve-
ments of up to 3 orders of magnitude relative to domain-
independent search-based methods, as well as scaling better
with the length of explanations. Finally, we show through a
user study that, when compared to baseline cost-based expla-
nations, our explanations are more satisfactory and effective
at increasing users’ understanding of problems.

Introduction

Path planners are traditionally not self-explanatory about
their output. The result of running a path planner is only a
path, and so users may have problems understanding why a
path is different from what was expected. Developers them-
selves may also have trouble debugging a large graph over
which planning is run, for example in case they want a cer-
tain path to become optimal in the next version of the model.

Domain-independent methods for eXplainable AI Plan-
ning (XAIP), such as Model Reconciliation methods
(Chakraborti et al. 2017), are theoretically also applicable
to path planning. However, as we will argue in this paper,
they currently lack the heuristics and domain-knowledge
that would allow them to scale in large-scale problems in
path planning. Computation speed is a requirement for in-
teractive interfaces, for example when planners are used in
human-in-the-loop designs, when safety-critical robots are
deployed in dynamic environments, or when a speedy or in-
teractive investigation of planner behavior is desirable.

In this paper we explore the connection between path
planning explanations and the inverse shortest path problem

Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A user asks why the shortest path on a naviga-
tion mesh is the path in orange, and not the one in green
(provided by the user). Each polygon is represented by a
vertex in a graph (small spheres) and is connected by edges
to other walkable vertices. Each Navmesh polygon can be
of different terrain-types: “easy” (blue) or “hard” (red) that
correspond to a different cost-per-distance.

(Burton and Toint 1992; Ahuja and Orlin 2001). We show
that this framing allows us to formulate explanation prob-
lems as numerical optimization, and thus leverage the speed
of commercial optimization solvers. We focus on path plan-
ning problems in navigation meshes (Navmeshes) (Van Toll
et al. 2016; Mononen 2014) which are popular representa-
tions of 2D and 3D environments used in real-world com-
puter game products (MobyGames 2019) and robotics ap-
plications (Brandao, Aladag, and Havoutis 2020).
In summary our contributions are the following:

e We show that explanations of path plans of the type “why
is A the shortest path, rather than B?” can be formulated
as inverse-shortest path problems;

e We propose two optimization-based inverse-shortest path
methods to provide explanations in Navmeshes—that lead
to fast and scalable computation of explanations com-
pared to a domain-independent XAIP baseline;

e We show our explanations are more effective at updating
users’ mental models of maps, as well as leading to higher
user satisfaction than cost-based explanations.

We evaluate the methods in large-scale path planning prob-
lems inspired by robotics and computer-game domains.

Related Work

The kind of explanations that we generate in this paper are
related to work on excuse generation (Gobelbecker et al.
2010), where explanations refer to changes to the original
problem that turn an infeasible problem into a feasible one.
Here we focus on explanations (or “excuses’) for path opti-
mality instead of infeasibility—thus referring to changes to
the problem that make a user’s expected path optimal.

This work is also related to “Model Reconciliation” (MR)
(Chakraborti et al. 2017) for Al Planning tasks, which in-
volves computing differences between the user’s and plan-
ner’s model of the problem. In MR, these differences are
computed by searching directly in the space of models, i.e.
building a tree that starts at the human’s model and adds or
removes a precondition, effect, etc., at each node until arriv-
ing at a model where the planner’s path is optimal. This pro-
cess is complete but time-consuming, which is why in this
paper we explore the use of optimization tools for speed.

While we focus on path planning, other work has dis-
cussed explanations for Multi-Agent Path Finding (Almagor
and Lahijanian 2020), where the goal is to obtain an intuitive
explanation for why the agents’ paths are non-colliding; and
explanations of failure in motion planning (Hauser 2014;
Kwon, Huang, and Dragan 2018). In this paper we focus on
a different type of explanation—explanation of the optimal-
ity of a path—that answers contrastive questions of the type
“why is path A optimal, rather than B?”. We show that such
explanations are related to the problem of inverse shortest
paths (Burton and Toint 1992; Ahuja, Orlin, and Magnanti
1993), which looks for a minimal change to graph weights
that leads to a desired path being optimal.

Our work targets a specific type of path planning
problems—planning on navigation meshes (Mononen 2014;
Van Toll et al. 2016; Brandao, Aladag, and Havoutis 2020).
We focus on this particular representation of environments
since it is widely and heavily used in computer games
(MobyGames 2019) and robotics (Brandao, Aladag, and
Havoutis 2020), therefore increasing the potential of real-
world impact and usefulness. Additionally, the structure of
the path planning problem in Navmeshes is interesting due
to the existence of terrain types, which make the inverse
shortest paths problem combinatorial—thus requiring the
use of Mixed-Integer Linear Programming (MILP) solvers.

Background
Shortest Path

Let G = (V, E, W) be a directed graph with vertices v; €
V,edges e; € I, and a positive real-valued weight w; € W
associated with each edge. Edge e; connects vy € V to
vy(;) € V, where s(j) is the index of the origin vertex, and
t(4) the index of the target vertex. For convenience, weights
can also be written as w(e;). Let the space of paths within
G be called I . The shortest path p* between vgiar and vgeal
is a sequence of consecutive edges p* = (ey, ..., e,) € g,
of any length n < |V, that minimizes Y _,_, w(e).

The problem can also be formulated as a linear program

(LP) (Ahuja, Orlin, and Magnanti 1993):

min w'x, st Az =b, (D
meR‘O‘ﬁ

where w is the vector of weights w; € W, x; is equal to
1 if e; belongs to the shortest path, and 0 otherwise. A is a
matrix where A;; is equal to 1if s(j) = i (i.e. e; leaves v;),
-1 if ¢(j) = 4, and 0 otherwise. Finally, b; is equal to 1 if
Vi = Ustart, -1 if ¥; = Vgoar, and 0 otherwise. The intuition
behind this LP is that we pick a set of edges with minimum
cost that connect the origin and target nodes (i.e. all nodes
except origin and target have the same number of input and
output edges). The LP is integral, so the components of x*
will be either 0 or 1 (Ahuja, Orlin, and Magnanti 1993).

Inverse Shortest Path (ISP)

The inverse of problem (1) is when we wish to obtain a new
weight vector w’ that leads to a desired shortest-path p’ cor-
responding to a desired ', with the goal of w’ being as close
as possible to w. This is also an LP (Ahuja and Orlin 2001):

Join e’ —wlly (2a)
.. 2 Aigmi = Wy V= (2b)
2 ATt A =W Via—o (20
xRV X e R 2d)
Aj =20 Vo (2e)
w e R, 2

where 7 and A are the dual variables of the constraints
Ax = b and x > 0, respectively, and (2b-2e) enforce
the complementary slackness conditions required for ' to
become an optimal solution to (1). We refer the interested
reader to (Ahuja and Orlin 2001) for details.

Another solution to the inverse problem involves enumer-
ating all s — ¢ paths over GG, which we denote by set X_.;
(Burton and Toint 1992). This formulation involves solving
the following problem, to which we call a “contrastive ISP”
because it contrasts the desired path to all other paths:

min |w" —wl|y (a)
St w'le' <w' 2D Vyoex. (3b)
,w’ > 0 (30)

Navigation Meshes

In navigation meshes, graph vertices represent physical lo-
cations that lie either on the center or the border of walka-
ble polygons. Edges in turn represent the possibility of navi-
gating between two adjacent locations. Only walkable space
that does not lead to agent collisions is represented in the
graph, and therefore any path in the graph is feasible. Nav-
igation mesh graphs are of a particular structure (see Fig-
ure 1). Each vertex v; is associated with a geometric posi-
tion z; € R?, and each edge e; is associated with a distance
dj = ||z4(j) — 2s(;)||- Additionally, each vertex v; is either

at the center of a navigation-mesh polygon, or at the center
of the intersection between two polygons—usually called a
“portal”. The set of non-portal vertices is V" C V. Each
polygon in the Navmesh (i.e. each non-portal vertex) is as-
sociated with a terrain-type k = {1, ..., K'}, and each terrain
type is associated with a cost-of-transport ¢, € R' (ie. a
cost per distance traveled). This means that, for example,
moving on an edge e; which lies on a polygon of terrain-
type Kexample requires a weight w; = d; Chiexample

We can represent the terrain-types of all non-portal ver-
tices using I € {0, 1}%IV"|, where I}, ; is equal to 1 if vertex
v; is of terrain-type k, and O if it is not. Let P(v;) = {0, 1}
indicate whether v; is a portal or not, and r(j) = {k €
{s5(5),t(4)} : P(vx) = 0} be a function that maps an
edge index to the index of its non-portal vertex. Weights in
Navmesh graphs are thus of the following form:

wj = S5y dickli () @

Methods

As in previous work on contrastive explanations (Cashmore
et al. 2019; Fox, Long, and Magazzeni 2017), we compute
explanations for questions of the type “why did you obtain
plan p rather than p’?”. Our domain of interest in this pa-
per is optimal path planning in Navmeshes, which means
explanations answer the more specific question “why is path
p* optimal, rather than p’?”. Our methods work as follows:
a user provides a path p’ that they had expected (or de-
sired), and we compute the minimal Navmesh changes that
would have to take place in order for p’ to be optimal. These
changes are in the form of new terrain-type assignments 1’
on a minimal subset of vertices V' C V, leading to explana-
tions of the following form: “p* is optimal, not p’, because
of the terrain types of vertices V'—optimal p’ would require
a terrain-type assignment such as I’”. Our explanations min-
imize the number of terrain-type changes, and therefore as-
sume that the cost of changing the terrain-type of a polygon
is the same for all polygons and terrain-types. We do this for
the sake of simplicity, though the methods are easily extend-
able. We focus on terrain-types specifically (instead of costs
ci) due to the integer and therefore challenging nature of the
problem. We propose two alternative methods to compute
such explanations: one is an inverse shortest path method
based on ISP (2), while the other is an incremental method
based on contrastive ISP (3).

Possible applications of explanations based on terrain-
type changes include computer games (where terrain map
changes can highlight problems or properties of a game map
that designers might want to change directly), but also in
robotics applications where the environment can be changed
as a way to improve robot motion performance or pre-
dictability. Besides these direct applications of the explana-
tions, our user study will show that this type of explanation
is also effective at improving users’ understanding of maps.

Navmesh Inverse Shortest Path: NISP

Obtaining a new terrain-type assignment I’ € {0,1}%IV"I
that satisfies a desired shortest-path is an inverse shortest
path problem similar to (2). Because 1’ is binary (unlike

the real-valued w in (2)) the problem becomes a Mixed-
Integer Linear Programming (MILP) problem. Throughout
the rest of the paper we will refer to this problem as simply

“Navmesh-ISP” or NISP.
NISP:

goin (| =2l (5a)
s.t. Yo AT = djckl;cvr(j) V=1 (5b)
D2 Aimi+ A5 = e djckly 5y Viai—o (50)
x e RV X e RIPI (5d)
Aj 20 Voo (5¢)
I e {0, 1}Vl (56
2k l;cz =1V (5g)

This formulation minimizes the number of nodes with ter-
rain changes in (5a). Lines (5b-5e) are inverse shortest path
constraints that correspond to those in (2b-2e), but where
edge weights are expressed as a function of node terrain-
types I. Lines (5f-5g) enforce a single terrain-type per node.

Navmesh Incremental Inverse Shortest Path:
NISP#

The previous problem is typically large in the number in-
teger variables and constraints (i.e. K |V"| binary variables
and O(|E| + |V|) constraints), therefore taking a long time
to construct and solve as we will show later through exper-
imental results. To alleviate this issue, we propose a sec-
ond method that incrementally builds up the set of con-
straints necessary to obtain a solution to the problem. The
contrastive ISP formulation (3) is specially suited for an in-
cremental method since each constraint is a path alternative
to p’. The main idea behind our method is then to incre-
mentally add new alternative paths to the problem until the
shortest path becomes p’.

The method is as described in Algorithm 1 (NISP#). It
keeps an auxiliary graph G’ from which to gather alterna-
tive paths P,_,;, which are the paths that p’ should be made
shorter than. In the beginning G’ is equal to the original
graph G (line 3). If the method succeeds, then at the last
iteration G’ will be as close as possible to G and such that

Algorithm 1 NISP#
1: Input: graph G, start s, target ¢, desired path p’
2: Output: new graph G’ where p’ is optimal
3: G+~ G
4: Py_yp {}
5: for iter in 1, ..., max_iter do
6: Ps_; < Ps_; U {shortest_path(G’)}
7: G’ < ContrastiveNISP(G,p’, Ps_¢)
8: if not G’ then

9: return failure
10: p < shortest_path(G")
11: if p’ == pthen
12 return G’
13: return failure

p’ is its shortest path. The method starts with an empty set
of alternative paths (line 4), and at each iteration it adds the
shortest path of G’ to the set (line 6). It then tries to solve
a contrastive NISP problem (line 7) based on equation (3),
as we will describe next. The result of solving this prob-
lem is a graph where p’ becomes shorter than all alternative
paths Ps_,, found so far. However, making p’ shorter than
the set of shortest paths found so far does not guarantee that
p’ becomes the shortest path in G’. This is because other
paths may still exist in G’ that are shorter than p’. There-
fore, the method checks whether p’ is the shortest path in
G’ (lines 8-9). If not, it proceeds to the next iteration—i.e.
it computes the new shortest path and makes sure its cost
becomes higher in the next iteration, etc. Eventually, NISP#
will reach a point where either p’ has become the shortest
path (line 12), or where the problem is infeasible (line 9).
Infeasibility will occur in situations where there is no com-
bination of terrain-types in G that makes p’ the shortest path.
This could be because the user’s expected/desired trajectory
is too long, or because the difference between the costs of
each terrain type is too small'.

We now move on to explain the ContrastiveNISP prob-
lem. Let Ps_,; be the current set of alternative paths in path
form, i.e. Poyy = {p0),...,pN) : p(€ IIgV;}. Con-
trastiveNISP is the Navmesh-version of the contrastive ISP
in (3), and therefore an integer problem:

‘ ContrastiveNISP: ‘
n};n ' =1 (6a)
s.t. Gl' <0 (6b)
U e {01}V, (6¢)

where GI’ < 0 corresponds to (3b) and represents the set
of N path inequalities, one for each alternative path p(*) €
Ps_,; as below:

> Dodjerly gy —

jejeED’ kK

j~e§p<i> %dj%l;“’r(j) =0

Note that only the components of I’ that relate to vertices
along desired and alternative paths (p’ and Ps_,;) are actu-
ally present in inequalities. Therefore the effective number
of decision variables is much lower than in NISP (5).

To summarize, NISP# (Algorithm 1) incrementally
builds a set of alternative paths Ps_,;, from which it com-
putes a new graph G’ where p’ is shorter than all alternative
paths. At each iteration it adds the current shortest path of
G’ to P,_,; so that eventually p’ becomes the shortest path.

Experiments
Experimental Setup

For the following experiments we used the map of a large
building whose 3D model is public—the Barcelona Robotics

"Example: if a user desires a large detour from the optimal
path, and area-types have nearly equal costs, then even setting the
desired-paths edges to the lowest-cost area-type would not suffice
to make the path optimal.

Laboratory?. The model consists of a campus of multiple
buildings and outside platforms, stairs, lamp posts, etc. The
Navmesh of this model is shown in Figure 1. There are mul-
tiple ways to cross the campus (around the patio using the
platform on the right, another platform on the left, or by
crossing the patio and climbing the stairs). The optimal path
between two nodes depends on both distance and the cost
of traveling on stairs vs flat ground. The hypothetical use
case is of a robot that moves throughout campus running
errands, delivering packages or guiding visitors, similar to
(Rosenthal and Veloso 2012). This could be a wheeled mo-
bile robot with tracks, or a legged robot with stair-climbing
functionality (Brandao, Aladag, and Havoutis 2020).

We ran GaitMesh (Brandao, Aladag, and Havoutis 2020)
to automatically generate terrain-type assignments to the
model®. The procedure uses measurements of local curva-
ture to assign a terrain-type, and leads to an assignment of
terrain type 1 (“easy”) to flat ground and 2 (“hard”) to stairs
and areas that are close to walls and obstacles. We assume
the cost-of-transport of the hypothetical robot to be 1 unit
per meter on easy terrain and 8 units per meter on hard ter-
rain. We use the Recast toolkit (Mononen 2014) to generate
a navigation mesh from this model and run planning and ex-
planation methods on the underlying graph. The graph is of
size |V| = 4935 and | E| = 6056.

To solve the optimization problems we use the commer-
cial solver Gurobi (v9.0.1)* on the Python optimization in-
terface cvxpy (v1.1.4) (Diamond and Boyd 2016). On the
Navmesh used for our experiments, the NISP problem con-
sists of 24675 scalar variables, 3814 integer variables and
33707 constraints. Measured computation times in this pa-
per include problem construction time. Experiments were
run on a laptop with an Intel i7 1.90GHz quad-core CPU,
16GB RAM, running Ubuntu 18.04. Code is available at
https://github.com/martimbrandao/navmesh_explanations.

Example Optimality-Explanations

Figure 2 shows 5 examples of explanations obtained by our
methods. Figure 2a shows the map, where “easy” terrain is
colored blue and “hard” is red. Lines depict polygon borders.
Figures 2b-2f show the shortest path between two points in
the map as orange lines, and the potential user’s expected
path as overlaid green and red lines. The motivation for the
user to provide these paths and ask “why isn’t this the short-
est path?” could be a wish to understand the reasoning be-
hind the planner (i.e. update the mental model of the prob-
lem). Alternatively, the user could be a developer that be-
lieves an agent should actually take this path, and therefore
wishes to know the minimal changes to apply to the map in
order to make sure that becomes the new preferred path (i.e.
in order to tune which terrains should be considered “easy”
or “hard”).

In the first example 2b, the shortest path involves going
around a stair-area (red terrain avoided by orange path), and

Zhttp://www.iri.upc.edu/research/webprojects/pau/datasets/
BRL/

3https://github.com/ori-drs/gaitmesh

*https://www.gurobi.com/

(d) Question and explanation 3 (length 28)

(e) Question and explanation 4 (length 2)

=

(63} Queqtlon and explanatlon 5 (length 19)

Figure 2: A Navmesh (a) and 5 explanations of Navmesh paths (b-f). In all examples a user asks “why is path A the shortest, not
path B?” by providing the expected/desired path B. A is in orange, B in green+red. The actual explanation is a set of changes
of terrain-type highlighted by black circles, and reads as “because B would require a change in terrain labels such as this”.

around a building (empty space in white) through the right
platform until reaching the goal (in the top of the image).
The user provides an alternative path that crosses hard ter-
rain but is shorter in distance. The explanation itself is a new
map, or the set of differences between the original and new
map—which are highlighted by black circles. In this case
the explanation is that the two highlighted regions which are
labeled hard (red) would have to become easy (blue) in or-
der for the provided path to become optimal. These regions
correspond to two separate staircases. The number of actual
polygon terrain-types changed is 14, which we refer to as
the explanation “length”. In example 2c the problem is sim-
ilar but the user’s path is further away from the original. The
explanation now includes other regions which would have to
become hard so as to make the user’s long path optimal (37
changed polygons). Example 2d is an intermediate length-28
explanation example, and 2e is a short length-2 explanation.
Finally, 2f involves explaining why the shortest path does
not climb down a few steps of a staircase instead of walking
a large distance around it. For this example we used cost-of-
transport of 1 vs 50 units per meter (instead of 1 vs 8§ as in
the previous examples).

Multiple Solutions

We obtained all explanations shown in 2b-2f using the NISP
method. NISP# obtains explanations of the same length as
NISP (i.e. same L1 norm) in all cases. One important point
to note is that terrain-type explanations may have multiple
optimal solutions, and therefore the actual optimal solutions
I’ found by NISP and NISP# may be different from one an-
other, and they will also vary with the choice of optimization
algorithm used to solve (5) and (6). Multiplicity of solutions
is a characteristic inherent to plan-explanation and Model

Reconciliation (Chakraborti et al. 2017), and it is reflected
in the optimization problems solved by NISP / NISP#.

Our methods, however, can also be leveraged to enumer-
ate all possible explanations for a question. After an optimal
explanation is found with either method, we can re-solve
the same optimization problem with an additional constraint
that the solution is different from the previous, and this can
be done iteratively until no more solutions are found. We
used this approach to enumerate all optimal solutions in each
of the problems 2b-2f. While problem 2f has a single opti-
mal solution, 2b has 2 optimal solutions, 2¢ has 22, 2d has
2, and 2e has 6. Figure 3 shows 3 of the 22 optimal solutions
to problem 2c. All optimal solutions are of length 37—they
involve changing the terrain-types of 37 polygons. We will
discuss computation time in section “Scalability”.

NISP# Iterations

NISP# works by incrementally building up a set of con-
trastive paths that must be of higher cost than the user’s
expected path. Figure 4 (left) shows the iterations of the
method in problem 2c, as a sequence of paths colored
from yellow (first iteration) to red (last iteration). The first
iteration corresponds to the shortest path in the original
Navmesh, and the last iteration is the user’s desired/expected
path. At each iteration, the constraint is that the cost of the
user’s provided path should be lower than all paths from
previous iterations. The method first obtains a map where
the shortest path proceeds straight to the staircase (yellow
path). In the next iteration, the yellow path is constrained
to become more costly than the desired shortest path. This
leads to a new map where the shortest path is the orange
line, which is achieved by changing terrain types along the
yellow path to “hard” (not shown). The last iteration leads

Figure 4: Left: iterations of NISP# shown as paths colored
from yellow (first iteration) to red (last iteration). At each
iteration, the constraint is that the cost of the user’s provided
path becomes lower than all paths from previous iterations.
Right: explanation for an infeasible user path (in green).

to the shortest path becoming the desired path, again at the
cost of changing a set of terrain-types along the yellow and
orange paths to “hard”.

The other problem (right of Figure 4) is an example where
the question “why is path A (orange) the shortest, not B
(green)?” cannot be answered exactly, i.e., for this problem
there is no change of terrain-types that can provide the de-
sired path and hence NISP/NISP# have no solution. The fig-
ure shows the single iteration of NISP# in red, which does
not correspond to the user’s desired path in green. However,
the path is still closer to A, and can therefore be used to pro-
vide an explanation with “clarification”. For example: “B
which you provided is not feasible, do you mean path C (in
red)? C is not optimal because that would require a change
in terrain labels such as...”.

Scalability

We evaluated the scalability of the proposed methods by
measuring the computation times and memory usage of
NISP, NISP# and a strong baseline. The baseline is an
A* model search method used in Model Reconciliation
for AI planning problems (Chakraborti et al. 2017), but
where the solver was replaced by a path-planning solver
for increased speed. The implementation for the baseline
method (Chakraborti et al. 2017) was adapted from the of-
ficially released code’. Basically, the algorithm starts an A*
search from the original model (G) as its initial state, and
then expands this state by creating |V"| new models where
each model differs from the original in a single terrain-type
change. The expansion procedure continues until a graph
where p’ is optimal is found. We applied two changes to

>https://github.com/TathagataChakraborti/mmp/

the original implementation. First, instead of a state expan-
sion generating a new PDDL-model file where a single ac-
tion or initial state is added/removed, we directly generate
a new graph where one of the polygons has its terrain-type
changed. Second, for a generous baseline we replaced gen-
eral Al Planning solvers (Fast-Downward and VAL) by the
Dijkstra algorithm. Not replacing Fast-Downward and VAL
by Dijkstra leads to orders of magnitude larger computation
times, therefore making even the easiest problems far from
interactive. For speed, we also keep the heuristic state ex-
pansion feature of (Chakraborti et al. 2017) turned on.

We used the 5 previous explanation problems of Figure 2,
as well as 5 other problems of varying explanation lengths,
such as to cover a wide range of explanation complexity.
The explanation length, number of iterations (in the case
of NISP#), computation time and peak memory usage are
shown in Table 1. The time to compute all optimal solutions
(instead of a single optimal solution) is also shown for the
NISP# method as NISP#. We show the number of optimal
solutions as extra iterations in the table (e.g. 3 iterations to
find the first solution, 2 optimal solutions shown as 3+2). We
solved each explanation problem 10 times, of which the av-
erage and standard deviation of computation time are shown
in the table. Computation times over 1 hour were considered
as failures and are not reported. We computed peak memory
usage with filprofiler (v0.7.2)°.

The table shows that memory consumption is similar be-
tween A* model search and NISP#, at around 100MB.
A* consumes more memory than NISP# as the explana-
tion length (and the number of expanded nodes) increases.
NISP takes over 2GB in memory, due to the large size of the
mixed-integer optimization problems.

The table also shows that A* model search is fast for short
explanations below length 4 (0.2-0.3s), but increases expo-
nentially with explanation length (2950.4s at length 14, vs
0.5s for NISP#). NISP takes around 70 seconds to compute,
independently of explanation length, and NISP# is the over-
all fastest method, taking 0.5s for explanations of all lengths
up to 14, and 1.6s for length 37. For all problems, A* model
search obtains the same solutions as our methods. However,
the combinatorial nature of the problem leads to an exponen-
tial increase in computation time with explanation length, as
seen in the table. On the other hand, as these results show,
the use of commercial MILP-specialized solvers leads to a
near-constant solve time in all the problems we tested. These

Shttps://pypi.org/project/filprofiler/

Pr. | Method | Iter. | Len. Comp. Mem.
time (s) (MB)
NISP# 3 37 1.6 £ 0.07 107
1 | NISP# | 3422 | 37 11.9+£0.36 107
NISP - 37 84.4+3.18 | 2460
A* - - >3600 -
NISP# 3 28 1.5+ 0.07 107
2 | NISP# | 3+2 | 28 2.8 +0.10 107
NISP - 28 747 £5.86 | 2460
A¥ - - >3600 -
NISP# | 4 19 0.7 + 0.06 103
3 | NISP# | 4+1 | 19 1.2 £0.07 103
NISP - 19 78.5+£3.69 | 2460
A* - - >3600 -
NISP# 1 14 0.5 + 0.06 98
4 | NISP# | 142 | 14 1.2 +0.06 98
NISP - 14 82.0+3.85 | 2460
A* - 14 | 2950.4 +69.37 | 173
NISP# 1 12 0.5+ 0.05 98
5 | NISP# | 145 | 12 2.0+0.14 98
NISP - 12 73.6 +7.77 | 2460
A* - 12 | 1177.8 +£40.62 | 128
NISP# 1 10 0.5+ 0.06 98
6 | NISP# | 1+4 | 10 1.74+0.11 98
NISP - 10 61.84+0.59 | 2460
A* - 10 | 323.6+41.04 | 104
NISP# 1 8 0.5+0.08 98
7 | NISP# | 1+1 | 38 0.8 4 0.06 98
NISP - 8 7344580 | 2460
A¥ - 8 182.2 + 24.21 99
NISP# 1 6 0.5+ 0.06 98
8 | NISP# | 146 | 6 2.2+0.12 98
NISP - 6 67.9 £4.35 | 2460
A¥ - 6 55.3 +3.19 95
NISP# 1 4 0.4 4+ 0.05 97
9 | NISP#” | 1+1 | 4 0.6 £ 0.07 97
NISP - 4 71.7+436 | 2460
A% - 4 0.3 4+ 0.04 92
NISP# 1 2 0.5+ 0.05 97
10 | NISP# | 1+6 | 2 2.0 +0.08 97
NISP - 2 76.9 +£3.08 | 2460
A% - 2 0.2 4+ 0.05 90

Table 1: Performance of the NISP methods (ours) vs A*
model search (domain-independent) on multiple problems.
Note: “Pr.” is problem id, “Iter.” number of iterations, “Len.”
explanation length (i.e. number of terrain-type changes).

results show that in order for explanation methods to scale,
it might be required to specialize the algorithm to specific
problem instances.

The time to enumerate all solutions is approximately N,t,
where N, is the number of optimal solutions and ¢ is the time
to solve one optimization problem (i.e. the time to solve a

single iteration). As the table shows, NISP# computes all
optimal solutions at a fraction of the time that other methods
take to compute a single optimal solution.

User Study

We conducted a user study to evaluate the explanations gen-
erated by our methods. We used an online questionnaire to
measure: 1) user satisfaction with the explanations; 2) ac-
tionability of the explanations (i.e. how confident users are
that they can manipulate the model to obtain desired behav-
ior after exposure to an explanation); and 3) user’s under-
standing of the planning problem after exposure to the expla-
nations. We directly ask users for their satisfaction and ac-
tionability scores in 1-7 Likert scale (i.e. 7 qualitative values
between “very unsatisfied” to “very satisfied” and similarly
for actionability using a “strongly disagree/agree” scale). To
measure map understanding, we ask users to guess which of
two paths would be the fastest to traverse between a certain
start-and-goal problem, for multiple problems, and compute
the accuracy (“guessrate”) of their replies. The guessrate is
thus the percentage of problems for which they guess the
optimal path correctly. After providing their guesses to each
problem, the users’ were shown the true answer and the ex-
planation. Since the same type of explanation is shown over
multiple problems on the same map, it can have a positive
influence over users’ understanding of the map—which we
measure through guessrates for each explanation method.

We gathered data from 19 subjects with more than 1 year
of experience in either using or developing planning algo-
rithms. Each participant was randomly assigned to 1 of 3
groups (1 of 3 questionnaires). Groups 1, 2, 3 had a bal-
anced number of 7, 6, and 6 subjects respectively. Each
group saw explanations generated by two different meth-
ods. The methods we included were: NISP#, NISPf, and
a baseline that simply states the difference in cost between
the two paths (i.e. “path A is fastest to traverse, because
A takes 30 seconds to traverse, while B takes 35”). Each
group saw 2 out of the 3 methods to keep questionnaire
time low. However, methods were balanced across groups—
group 1, 2, 3 saw methods path&NISP#, NISP# &NISP#,
NISP?# &path, respectively—and each method was seen by
a balanced number of subjects (13, 13, 12). Each method
was seen on a different map, so users did not accumulate
knowledge over a map before seeing the second explanation
method on the second map.

Each questionnaire started with a description of the task
and then two sets of 6 questions (one set per explanation
method). Each set was associated with a single map, and in
each question a user was shown the map and two paths with
the same start/goal states. In order to assess users’ under-
standing of the map, the questionnaire then asked users to
guess which of the paths is the fastest to traverse. The users
were told that each color in the map corresponded to a dif-
ferent speed at which the agent could traverse the map, but
users were not told the values (they had to guess). After an-
swering each question, the users were shown the true answer
and an explanation, and were asked to score the explanation
in terms of satisfaction and actionability.

Figure 5 shows the results of the questionnaire. The fig-

7 7 —‘7 1.0
6 6 0.8 T
> A A A

g5 85 2 Y 2
=] 3 = 0.6
Qo A -
&4 . g4 2
2 S N €04
= A =] = 0.
g3 ©3 ®

1

path-cost NISP# NISP#a path-cost NISP# NISP#a 0.0 path-cost NISP# NISP#a
n=13 n=13 n=12 n=13 n=13 n=12 n=13 n=13 n=12

Figure 5: Results of the user study. Guessrate refers to users’ acuracy at predicting the fastest of two paths in a map.

ure shows that the median (marked with an orange hor-
izontal line) satisfaction was lowest for path-cost expla-
nations, higher for NISP#, and highest for NISP#. How-
ever, the means of satisfaction were similar for NISP# and
NISP#,, and NISP# actually had a more negative lower
quartile than NISP#. The figure also shows a large dif-
ference in actionability scores: path-cost explanations re-
ceived median 3 high-variability scores, while our methods
received more consistent scores of 6 and 5.5. Interestingly,
the use of multiple explanation solutions in NISP# did not
significantly change actionability perceptions of the expla-
nation compared to NISP#. Finally, NISP# explanations led
to the highest guessrates (median 0.8 accuracy) which means
the highest understanding of the model, while path-cost and
NISP? had similar median and mean scores of 0.65.

Our methods (NISP# and NISP#) generated explana-
tions which were better than path-cost explanations, con-
sistently for satisfaction, actionability, and guessrate/map-
understanding. However, NISP# actually led to lower un-
derstanding than NISP#. We believe the reason for this dif-
ference could be that access to a large number of optimal ex-
planations (optimal map changes) could actually overwhelm
users and have a negative effect in the update of the users’
mental models (the maximum number of optimal solutions
shown by NISP# in the questionnaire was 27).

Conclusion and Discussion

In this paper we introduced two optimization-based meth-
ods for solving inverse shortest paths on navigation meshes.
We used these to provide explanations for the optimality of
shortest paths. Using these methods, a user may provide an
alternative path and ask why it is not optimal, and the meth-
ods compute minimal changes to the model that lead that
path to become the shortest. Such kind of explanation finds
direct application in game map design and robot environ-
ment design (i.e. as a way to find changes to a map that lead
to desired behavior). Importantly, our experiments show that
these explanations are not only actionable but they also im-
prove users’ understanding of the maps.

We proposed one method based on an optimization for-
mulation of ISP (NISP), and a method based on incremen-
tal optimization (NISP#). The latter incrementally computes
a set of paths in the graph that the desired path should
be shorter than, thus making each sub-problem small and

quickly solvable. NISP# is up to 175x faster than NISP, and
5900x faster than (generously implemented) state-of-the-art
XAIP methods. We believe optimization could also be lever-
aged for general task planning problems, and a direction for
research is using MILP-formulations for XAIP problems.

We showed that some problems have multiple optimal ex-
planations, in which case NISP# can be used to quickly enu-
merate all optimal solutions. However, a large number of
explanations can be overwhelming to a user—and our user
study shows it can be counterproductive in terms of users’
understanding of the map. An interesting direction of re-
search is to find summary explanations that describe what is
common across all possible explanations—similar in spirit
to “space of plans” explanation (Eifler et al. 2020) and plan
summarization (Rosenthal, Selvaraj, and Veloso 2016).

We also showed that when users make unrealistic ques-
tions (i.e. when path B provided cannot be made optimal),
NISP# can still provide clarifying explanations which an-
swer a similar but feasible question. Such clarification is
similar in practice to low-explicability explanations (Zhang
et al. 2016). In the context of path planning, clarification
may be useful in cases where it is hard for users to manually
specify their expected/desired paths.

While the work in this paper is similar in spirit to Model
Reconciliation (MR) (Chakraborti et al. 2017), there is one
important difference: our explanations compute changes to
the planner’s model until the user’s path becomes optimal,
while MR typically proceeds in the opposite direction (i.e.
starting from the user’s model). MR has thus the flexibil-
ity to answer “why not path B?” by proving B is not opti-
mal. However, as our focus on this paper was on actionable
explanations, for example to help game designers or robot
deployers tune maps, in this paper we were interested in ob-
taining explanations that made users’ paths optimal, and not
just proving the user’s paths were not optimal.

In the future we plan to evaluate how the observations
from our user study transfer to lay users, and the conse-
quences for system design. Another interesting research di-
rection is that of obtaining similar explanations based on
a desired waypoint instead of a full trajectory (i.e. “why
does path A not pass through b?”), as well as extending the
method to coverage path planning, multi-agent path plan-
ning, and other related problems.

Acknowledgments

This work was supported by the Air Force Office of Scien-
tific Research under award number FA9550-18-1-0245.

References

Ahuja, R. K.; and Orlin, J. B. 2001. Inverse Optimization.
Operations Research 49(5): 771-783. doi:10.1287/opre.49.
5.771.10607.

Ahuja, R. K.; Orlin, J. B.; and Magnanti, T. L. 1993. Net-
work flows: theory, algorithms, and applications. Prentice-
Hall.

Almagor, S.; and Lahijanian, M. 2020. Explainable Multi
Agent Path Finding. In 19th International Conference on
Autonomous Agents and Multi-agent Systems (AAMAS), 34—
42.

Brandao, M.; Aladag, O. B.; and Havoutis, 1. 2020.
GaitMesh: controller-aware navigation meshes for long-
range legged locomotion planning in multi-layered environ-
ments. IEEE Robotics and Automation Letters 5(2): 3596—
3603. ISSN 2377-3774. doi:10.1109/LRA.2020.2979628.

Burton, D.; and Toint, P. L. 1992. On an instance of the
inverse shortest paths problem. Mathematical programming
53(1-3): 45-61.

Cashmore, M.; Collins, A.; Krarup, B.; Krivic, S.; Maga-
zzeni, D.; and Smith, D. 2019. Towards explainable Al plan-
ning as a service. arXiv preprint arXiv:1908.05059 .

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In 26¢h Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
156-163.

Diamond, S.; and Boyd, S. 2016. CVXPY: A Python-
embedded modeling language for convex optimization.
Journal of Machine Learning Research 17(83): 1-5.

Eifler, R.; Cashmore, M.; Hoffmann, J.; Magazzeni, D.; and
Steinmetz, M. 2020. A New Approach to Plan-Space Expla-
nation: Analyzing Plan-Property Dependencies in Oversub-
scription Planning. In AAAI 9818-9826.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. arXiv preprint arXiv:1709.10256 .

Gobelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with Good Excuses: What to Do
When No Plan Can Be Found. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS’10, 8188. AAAI Press.

Hauser, K. 2014. The minimum constraint removal problem
with three robotics applications. The International Journal
of Robotics Research (IJRR) 33(1): 5-17.

Kwon, M.; Huang, S. H.; and Dragan, A. D. 2018. Express-
ing robot incapability. In 2018 ACM/IEEE International
Conference on Human-Robot Interaction (HRI), 87-95.

MobyGames. 2019. Games using recast.
https://www.mobygames.com/game-group/middleware-
recast Accessed on 2021-03-15.

Mononen, M. 2014. Recast navigation.
https://github.com/recastnavigation/recastnavigation
Accessed on 2021-03-15.

Rosenthal, S.; Selvaraj, S. P.; and Veloso, M. M. 2016. Ver-
balization: Narration of Autonomous Robot Experience. In
IJCAI, volume 16, 862-868.

Rosenthal, S.; and Veloso, M. 2012. Mobile robot planning
to seek help with spatially-situated tasks. In 26th AAAI Con-
ference on Artificial Intelligence (AAAI).

Van Toll, W.; Triesscheijn, R.; Kallmann, M.; Oliva, R.;
Pelechano, N.; Pettré, J.; and Geraerts, R. 2016. A com-
parative study of navigation meshes. In 9th International
Conference on Motion in Games, 91-100. ACM.

Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2016. Plan explicabil-
ity for robot task planning. In RSS Workshop on Planning
for Human-Robot Interaction: Shared Autonomy and Col-
laborative Robotics.

