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ABSTRACT

Drowsiness and fatigue are important factors in driving safety
and work performance. This has motivated academic research into
detecting drowsiness, and sparked interest in the deployment of
related products in the insurance and work-productivity sectors.
In this paper we elaborate on the potential dangers of using such
algorithms. We first report on an audit of performance bias across
subject gender and ethnicity, identifying which groups would be
disparately harmed by the deployment of a state-of-the-art drowsi-
ness detection algorithm. We discuss some of the sources of the
bias, such as the lack of robustness of facial analysis algorithms to
face occlusions, facial hair, or skin tone. We then identify potential
downstream harms of this performance bias, as well as potential
misuses of drowsiness detection technology—focusing on driving
safety and experience, insurance cream-skimming and coverage-
avoidance, worker surveillance, and job precarity.
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1 INTRODUCTION

Statistics of the effect of driver sleepiness and fatigue in car acci-
dents [13], as well as the surge of semi-autonomous driving, has
motivated research into drowsiness detection (DD). These algo-
rithms use sensor data to estimate the degree of alertness of drivers,
and such estimates could potentially be used to provide warnings
[9, 19] or apply other mechanisms to alert a driver [18], adjust
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autonomous driving settings, or flag the event to a “supervisor” for
further action. Drowsiness and fatigue detection can also be used to
monitor workers outside of a driving context, for example in office
work [15], e-learning [11] or physically demanding work [17]. In
this paper we investigate the potential harms of deploying such
systems.

Many implementations of drowsiness detection use visual input
from cameras and facial features to estimate drowsiness [9, 10].
However, given recent findings of computer vision algorithms con-
sistently underperforming on specific social groups, typically ethnic
minorities and already disadvantaged communities [2, 3, 12, 27], it is
likely that such biases will take place in DD as well. One important
question to ask is how the use of the technology and such dispari-
ties could impact different communities. Importantly, the existence
of drowsiness estimates also opens the door to multiple uses and
misuses of the data. For example, logistics and insurance companies
are two sectors that have shown an interest in the technology'?,
and thus its potential downstream impact can take financial and
job precarity dimensions. Our goal in this paper is to anticipate and
characterize the potential harms of deploying DD technology in
the real world. Our contributions are the following:

(1) We conduct a bias audit of a DD algorithm, where we iden-
tify performance disparities across race and gender groups
(Section 3);

(2) We identify sources of performance bias in DD, and potential
downstream harms (Section 3.3);

(3) We identify potential misuses of DD technology, and discuss
the gap between academic research and real-world use of
DD (Section 4).

2 BACKGROUND

Various methods have been proposed in order to detect drowsi-
ness in human subjects, including those using driving statistics
[7, 19], EEG [5], EOG [15], IMU [17], thermal [14] or vision data
[6, 8-10, 24]. Ramzan et al. [23] provide a comprehensive survey of
drowsiness detection methods.

Vision-based methods for DD typically use facial features such as
blinking rate [10], eye closure [6, 8], or yawning [14]. Some recent
methods use deep neural networks to predict drowsiness from eye
detections [10, 24] or face detections [9].

Some hand-designed features used in DD rely on skin segmenta-
tion [6], and deep-learning-based methods inclusively depend on
face or facial feature detections [10, 24]. This dependence on skin
and facial features opens the door to problems of bias given the
high variability of skin tone and facial features across populations.

!https://www.seeingmachines.com/guardian/guardian/
Zhttps://nationwidetrackingsystems.com.au/driver_behaviour/
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Recent work has shown that gender recognition from facial image
data often underperforms on minority groups such as black women
[3], and similarly for facial analysis algorithms on older adults with
dementia [26], or pedestrian detection algorithms on darker skin
tones [27].

In similar spirit to the works above, in this paper we audit a
state-of-the-art DD algorithm for differential performance across
gender and ethnicity, and draw conclusions regarding the potential
sources of bias and kinds of downstream impact. The work of
Ngxande et al. [21] is related to ours in that it also audits DD
algorithm performance. However, while we focus on evaluating
bias across gender and ethnicity categories within the same dataset
and identifying potential downstream harms, the former work [21]
assesses performance on a new out-of-distribution dataset from
a South-African context to evaluate the performance drop and
deployment readiness. In comparison to [21] we not only audit
an algorithm but also identify potential downstream harms and
misuses of the technology.

3 DIFFERENTIAL PERFORMANCE AUDIT

3.1 Experimental setup

We audit the temporal model proposed by Ghoddoosian et al. [10]
for the Real-Life Drowsiness Dataset (RLDD) [10]. The method uses
hand-designed blink features as input to an LSTM that predicts
drowsiness on a scale from 0 to 10 (Extremely Alert to Extremely
Sleepy). We chose this method due to its use of facial features, which
are a common predictor used across multiple methods [6, 8, 24],
and also due to the availability of source code using the RLDD
dataset—which contains information about gender and ethnicity of
participants.

The RLDD dataset consists of 180 RGB videos, each approxi-
mately 10 minute long. Videos are separated into 5 folds, each fold
consisting of videos from 12 participants. There are 60 participants
in total (annotated as 51 Male and 9 Female) from different eth-
nicities (10 Caucasian, 5 Non-white Hispanic, 30 Indo-Aryan &
Dravidian, 8 Middle Eastern, and 7 East Asian). These demographic
labels were self-reported by participants. Labels are not made pub-
licly available with the rest of the data, but total counts of each
category are reported in the original publication [10]. Therefore,
we (the authors of this paper) manually labeled each of the par-
ticipants into gender and ethnicity categories after watching the
participants’ videos>. Our annotations were consistent with the
label-counts above. The videos in the dataset were obtained by each
participant filming themselves in three different drowsiness states:
alert, low vigilant or drowsy. Drowsiness labels were also provided
by participants themselves according to how they were feeling:
alert, low vigilant, or drowsy.

In our experiments, we first trained the method to similar per-
formance reported by Ghoddoosian et al. [10], and then computed
performance metrics over each subset of participants (i.e. perfor-
mance over Male-, Female-, Caucasian-, ...-labeled participants).
We use the same performance metrics as reported in [10]: Blink

3We started by labeling all participants without checking the total counts from the
original paper. We left participants to whom group assignment was unclear to the end.
There were two of these remaining participants. Group membership of these became
clear once we had access to the remaining labels.
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Table 1: Performance of our obtained model compared to
authors’ published results. Values averaged across all test
folds.

Result BSRE VRE BSA VA

[10] 1.90 1.14 54.0% 65.2%
ours 1.59 1.28 56.6% 67.2%

Sequence Accuracy (BSA), Blink Sequence Regression Error (BSRE),
Video Accuracy (VA) and Video Regression Error (VRE). Similarly to
that publication we focus most comparisons on the VA metric, as it
is more appropriate for evaluating performance over a whole popu-
lation [10]. We computed these metrics in three different conditions,
described below.

3.1.1  Original condition. This experiment is a reconstruction of the
original results in [10]. As in the original publication, we use one
fold as a test set and the remaining four folds for training; we train
the model multiple times from different random seeds (10 times in
our experiments); and report results on the models that perform
best on the respective test sets (i.e. for each training-test split we
run training 10 times on the training set to obtain 10 models, pick
the model with best VA performance on the test set). These results,
therefore, are in practice using the test set for training.

3.1.2  Isolated training-and-test condition. In this experiment we
conduct the same procedure as in the previous condition, except
we pick the model (out of 10) that performs best on the training set
itself. Then, we compute performance results on the test set using
the chosen model, and these are the results we report in the paper.
This is to avoid using test data in training.

3.1.3  Missing group condition. In the final experiment we isolate
the training and test sets as in the previous condition. However, this
time we evaluate the models’ capability to generalize to new groups.
Specifically, for each group we compute the method’s performance
on that group using a model trained on all other groups (e.g. per-
formance on Female subjects computed from a model trained only
on Male subjects).

3.2 Results

3.2.1 Original condition experiment. Table 1 and 2 show the per-
formance of the models on the full dataset, and the original results
reported in [10]. The results are similar, and VA is actually 2% higher
than that reported by [10]. This could be related to random factors
in training, e.g. initialization of the models or random shuffle of
samples each epoch.

Table 3 shows the performance measured over each subset of
participants. To obtain the performance of the models on a certain
group (e.g. VA on Female) we first computed each participant’s
prediction using the appropriate model—i.e. using the model that
was not trained on that participant. Then, we computed the perfor-
mance metric over all participants in that group. The table shows
that the models performed worse for Indo-Aryan & Dravidian, Mid-
dle Eastern, and East Asian groups (compared to Caucasian and
Non-white Hispanic), and for the Male group (compared to Female).
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Table 2: Confusion matrices for the original condition exper-
iment. Our (top) vs authors’ results (bottom).

‘ Alert ‘ Low vigilant ‘ Drowsy ‘

Alert | 080 | 0.10 0.05
Low vigilant | 0.13 | 042 | 0.15
Drowsy | 0.07 | 0.48 | 0.80

|

| |
| |
| |
‘ ‘ Alert ‘ Low vigilant ‘ Drowsy ‘
| |
| |
| |

Alert | 081 | 0.12 | 0.05
Low vigilant | 0.18 | 0.32 | 013
Drowsy | 0.01 | 0.56 | 082

Table 3: Performance of the model in the original condition,
for different genders and ethnicities.

Group BSRE VRE BSA VA

Male 1.59 1.40 55.4% 66.0%
Female 148  0.63 59.5% 74.1%
Caucasian 113 1.27 65.2% 76.7%
Non-white Hispanic 0.81 029 652% 73.3%
Indo-Aryan & Dravidian  1.99 140 51.3% 63.3%
Middle Eastern 197 160 48.1% 66.7%
East Asian 111 113 60.1% 66.7%

The VA for Male participants was lower than Female by 8.1 per-
centage points; and the VA differences in ethnicity ranged from
6.6 percentage points (i.e. between Middle Eastern and Non-white
Hispanic) to 13.4 points (between Indo-Aryan & Dravidian and
Caucasian). Both regression errors, BSRE and VRE, for Indo-Aryan
& Dravidian, and Middle Eastern were also higher than for other
ethnicity groups (Table 3).

Table 4 shows that on average Female and East Asian groups had
a similar number of datapoints used for training, where a datapoint
is a sequence of 30 consecutive blinks captured in a video. However,
the method performed worse on the East Asian group (66.7% VA)
than on the Female (74.1% VA), as seen in Table 3. In contrast, Indo-
Aryan & Dravidian, and Middle Eastern had both a similar amount
of datapoints and similar VA (66.7% and 63.3%). Finally, Non-white
Hispanic subjects had the lowest average number of datapoints, 87,
but high performance (73.3% VA). Performance was therefore not
straightforwardly related to the number of detected blinks.

Table 5 shows the confusion matrix for the Middle Eastern group
as an example. The table shows the method is biased towards a
“drowsy” state, as the model wrongly predicted that state instead
of “Low Vigilant” in 75% of the cases. As we will discuss later
on, this observation has important consequences for downstream
applications of the method, such as insurance premiums or driver-
assist system performance.

3.2.2  Isolated training-and-test condition experiment. Table 6 shows
that in this second experiment, where we avoided using the test
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Table 4: Average number of contributed datapoints per sub-
ject.

Group Avg. num. datapoints per subject
Male 113
Female 233
Caucasian 173
Non-white Hispanic 87
Indo-Aryan & Dravidian 112
Middle Eastern 107
East Asian 214

Table 5: Confusion matrix for Middle Eastern subjects in the
original condition.

‘ Alert ‘ Low vigilant ‘ Drowsy ‘

|

| Alert | 075 | 0 | o |
| Low vigilant | 0.13 | 0.25 | o |
| Drowsy | 012 | 0.75 | 100 |

Table 6: Performance of the model on the “isolated training-
and-test” condition. Values are averaged over all test folds.

BSRE VRE BSA VA

Training set 0.85 0.74 68.9% 72.6%
Test set 1.59 1.08 552% 59.4%

Group

Table 7: Performance of the model for different genders and
ethnicities in the “isolated training-and-test” condition.

Group BSRE VRE BSA VA

Male 1.56  1.22 544% 57.5%
Female 1.40 030 61.0% 70.4%
Caucasian 0.88 039 654% 66.7%
Non-white Hispanic 130 158 61.8% 66.7%
Indo-Aryan & Dravidian  1.85 1.17 53.8% 56.7%
Middle Eastern 2.18 133 40.8% 50.0%
East Asian 1.23 1.08 57.8% 66.7%

set in training, Video Accuracy was 72.6% on the training set and
59.4% on the test set. This result shows that real-world performance
should be considerably lower than that reported originally in [10].

Table 7 shows per-group performance on this condition. Simi-
larly to the original-condition experiment, the method performed
worse on Indo-Aryan & Dravidian, Middle Eastern, and Male groups.
For example, Male VA was almost 13 percentage points lower than
Female, and performance on the Middle Eastern group was 16.7
percentage points lower than Caucasian.

Confusion matrices for the Middle Eastern and Indo-Aryan &
Dravidian groups in Table 8 show that the method is also biased
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Table 8: Confusion matrices for: Middle Eastern (top) and
Indo-Aryan & Dravidian (bottom) in the “isolated training-
and-test” condition.

‘ Alert ‘ Low vigilant ‘ Drowsy ‘

Alert | 0.63 | 0 | o
Low vigilant | 037 | 0.12 | 025
| o | 0.88 | 075

|
|
|
‘ Drowsy
|
|
|
|

|
|
|
‘ Alert ‘ Low vigilant ‘ Drowsy ‘
|
|
|

Alert | 0.90 | 0.17 | 010
Low vigilant | 0.10 | 017 | 027
Drowsy | 0 | 0.66 | 0.63

Table 9: Performance of the model for different genders and
ethnicities in the missing group condition.

Group BSRE VRE BSA VA

Male 2.06 1.78 51.2% 56.2%
Female 145 058 61.7% 81.5%
Caucasian 093 077 61.3% 60.0%
Non-white Hispanic 0.87 054 629% 66.7%
Indo-Aryan & Dravidian =~ 2.08 196 56.7% 58.9%
Middle Eastern 191  1.04 47.1% 62.5%
East Asian 094 061 595% 47.6%

towards the “drowsy” state in this condition. For Middle Eastern, in
88% of the cases when they felt low vigilant, the model predicted
that they were drowsy. For Indo-Aryan & Dravidian, this occurred
in 66% of the cases. Such high bias was not present in other groups
(20%, 20% and 43% for Caucasian, Non-white Hispanic, and East
Asian, respectively).

3.2.3  Missing group condition experiment. In the final experiment
we computed the performance on each group when the group is
excluded from training. The results, shown in Table 9, are similar
to the previous conditions: the method performed poorly on Male,
Caucasian, Indo-Aryan & Dravidian and East Asian groups, as Video
Accuracy was below 60.0% for each of these groups. Performance
on Male subjects was 25.3 percentage points lower than Female.
Comparing Tables 7 and 9 reveals that the method generalizes
poorly to unseen classes, as the performance drops considerably
on groups excluded from training. For example, VA dropped by 6.7
percentage points on the Caucasian group and by 19.1 points on
the East Asian group. Video Regression Error for Indo-Aryan &
Dravidian and Male groups is also the highest in this experiment.

3.3 Discussion of results

3.3.1 Consistent results. The results in all conditions showed con-
sistent performance disparities between certain groups. The method
performed worse on Male than Female subjects, and this was consis-
tent both across metrics and conditions. This could seem surprising
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Figure 1: Examples of blink-detection failure.

given that there are fewer videos labeled Female. However, the
Female group actually had more datapoints to use for training (a
datapoint is a sequence of 30 consecutive blinks captured in a video).

The methods also performed worse consistently on Indo-Aryan
& Dravidian, Middle Eastern, and East Asian groups. Performance
for these groups was the lowest in all conditions. Furthermore, the
models could be especially harmful for Middle Eastern and Indo-
Aryan & Dravidian groups, as they were biased towards a drowsy
prediction in these groups.

3.3.2  The source of disparity. The drowsiness detection algorithm
considered in the experiments uses four blink features: duration,
amplitude, eye-opening velocity and blinking frequency. The RLDD
dataset contains 9 videos labeled Female, who on average generated
more datapoints than Male. This suggests that detection perfor-
mance of these four blinking features could be negatively affected
by some gender-specific appearance characteristics. After inspec-
tion (by the authors of this paper) of all Male videos we identified
24 Male participants had significant facial hair, shade over the eyes,
or dark skin tone. Examples of these images are shown in Figure 1.
This could affect measurements of eye-opening velocity and am-
plitude. Moreover, Male participants often touched their faces and
beards, leading to blinks being misdetected or undetected—and
decreasing drowsiness detection performance.

Excluding a group from the training set in the third condition
had a strong impact on the results. This suggests that there could
be blinking features characteristic of specific groups. It also could
be the case that physical traits of a given gender or ethnicity make
it more difficult to predict drowsiness state. Finally, it is possible
that there are group-consistent differences in the way participants
estimate their own drowsiness states—such as a consistent under-
estimation or over-estimation of their own drowsiness state on
some groups.

3.3.3 Potential downstream disparate impact. Assuming drowsi-
ness detection systems can achieve high prediction performance
and we can find effective feedback mechanisms to help drivers
control drowsiness, then such systems could indeed be useful tools
to prevent sleep-related car accidents. However, the results of our
experiments show that these methods can lead to the opposite out-
come. For people of an ethnicity that the method performs poorly
on, the use of a drowsiness detection system could be more dan-
gerous than not using the system at all. For example, consider the
following hypothetical systems:

System 1: If the system is such that it does not let a person fully
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drive the car (e.g. make sudden turns, breaks, or accelerations) when
the driver is thought not to be alert, then such functionality could
prevent some people from doing proper driving. If the system used
the method we audit in this paper, East Asian and Middle Eastern
groups would be more subject to driving limitations even when
they were awake, due to mis-classification.

System 2:If the system is such that it does not let a driver turn on
and start driving a car, this could also lead to considerable harm—
such as in emergency situations due to labor or heavy injury, where
not being able to use the car would be disastrous and unfair, but
also in mundane situations due to harms from travel delays.
System 3:If the system is such that it uses sounds or physical stimuli
to raise the drivers’ state of alert, East Asian and Middle Eastern dri-
vers would in our case be unnecessarily stimulated, thus potentially
leading to greater discomfort, stress or annoyance when compared
to other groups. Such physical or mental states could actually lower
drivers’ attention or overall driving performance, and increase the
chance of an accident.

Another example of downstream impact is on insurance pre-
mium and coverage discrimination. If an insurance company used
drowsiness predictions to inform premiums and coverage, the mod-
els audited in this paper would disparately harm Middle Eastern and
Indo-Aryan & Dravidian groups, for which drowsiness detection is
biased towards the “drowsy” state. In these cases, an insurance com-
pany could unfairly avoid covering an accident due to a mistaken
drowsiness estimate, or it could consistently raise premiums for
people of these groups even if they were not less awake on average.

3.3.4 Technical solutions and barriers. The RLDD dataset appears
to be diverse as it includes subjects from five different ethnicities.
However, many other ethnic and gender groups could have been
represented. The method audited here did not generalize well to
unseen classes, and our results suggest there could be group-specific
features or behavior that is predictive of drowsiness. Therefore,
manufacturers of drowsiness detection algorithms should avoid
using RLDD and the temporal model audited here in production.

Our analysis also showed that there are important factors corre-
lated with performance differentials, such as facial hair, dark skin
tone, and face-touching habits. Thus, a varied dataset in terms of
facial features, and a rigorous analysis of both detector and model
performance across groups is necessary for responsible develop-
ment in this area.

Finally, there is a need for realistic driving data, where drowsi-
ness states are not self-reported but measured through effective
sensors or physical exams. Almost all videos in the RLDD dataset
are recorded indoors as participants looked at a screen, but drivers
will behave differently. Drivers may move their head and gaze in
different ways, wear sunglasses, or touch their faces more often. All
of these factors can lead a facial-feature-based drowsiness detection
algorithm fail—and so care should be taken to address this point in
real-world methods.

3.3.5 Experiments’ limitations. The main limitation of our analysis
is the fact that we audited a single drowsiness detection algorithm
on a single dataset. There are other drowsiness detection methods
which take into consideration different factors in their training
process. For instance, Reddy et al. [24] take into consideration
eyes, mouth and face crops; and [20] uses end-to-end architectures.
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However, our observation of a lack of generalization was also seen
in the work of [20] for end-to-end architectures.

Another limitation of our work is the categorization used for
gender and ethnicity. Even though categories were self-reported,
this data is not provided as part of the dataset and we thus had to
label each participant’s group membership. Although our group
counts matched those reported in [10], potential errors in group
labeling could still exist and thus introduce errors in the analysis.
The lack of representation of other groups, and the explicit use of
discrete categories itself could also perpetuate wrong conceptions
of gender and race. We believe the results are still in the interest of
minorities and marginalized groups as they show potential sources
of bias and downstream harm.

4 POTENTIAL USES AND MISUSES

4.1 Promoted applications and uses in research

Drowsiness detection is often promoted in research papers as a
tool to increase safety and self-awareness. DD has been applied to
driver monitoring [9, 19], e-learning [11], air traffic control worker
monitoring [25], industry worker monitoring for productivity and
accident prevention [17], and office worker monitoring [15].

In a Scopus? search of all papers mentioning the words “drowsi-
ness detection”, “sleepiness detection” or “fatigue detection” in their
title or abstract, we identified 1663 papers, out of which driver mon-
itoring was the most popular application (73% papers), followed by
worker monitoring (2%) and education (1%)°.

Research papers often state that drowsiness detection can be used
to decide when to hand over control to an autonomous (driving)
system [24]; use warnings [9, 19] or music change [18] to increase
driver alert state; suggest driving/working breaks [15], or simply
inform users of their own state [17]. Outside of the driving context,
alert levels are assumed to be useful for evaluating and iterating
user interface design [1] and to adapt lesson plans in e-learning
scenarios [11]. The overarching use of DD as promoted in research
is thus to increase human safety and efficiency through surveillance.
Correspondingly, 50% of the 1663 Scopus papers mention “safety”
or “accidents” in the abstract, while 14% mention “efficient” or
“efficiency”.

One criticism that can be made of this narrative of DD for safety
and efficiency is that it misses the fact that the most interested
parties in using such technology are likely those that have financial
gain in using it—such as health and car insurance, and companies
looking to enforce worker productivity in financial terms—thus
leading to issues of discrimination and exploitation as we will see
next.

Another gap in the academic literature is that of a lack of short-
and long-term evaluation of the full (feedback) system. In an attempt
to decompose the problem, researchers assume that downstream
mechanisms will be able to solve the consequences of a drowsiness
problem, and researchers thus focus on the actual performance of
the detection algorithm in isolation. However, performance of the
full system is crucial for the understanding and proper regulation
of the technology.

*https://www.scopus.com/
3 driving application identified by keywords: “driver” or “driving”, education: “teaching”
or “education”, worker monitoring: “worker” or “employee” keywords.
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4.2 Potential misuses of DD technology

We identify two potential misuses of DD: insurance misuse and
worker surveillance.

4.2.1 Insurance misuse. In the case of driver monitoring applica-
tions, drowsiness data is appealing to insurance companies as one
more predictor of risk, and to adjust premiums. Even though “in-
surance” is not mentioned in research papers as a potential use for
drowsiness detection (0 entries in the 1663 Scopus abstracts), such
use is most realistic in the context of driver monitoring—as there
are clear financial gains for insurance companies. Fine-grained risk
measurements allow insurers to refine risk categories, allowing
lower-risk groups to pay lower premiums at the cost of higher
premiums on high-risk groups. However, such refinement leads to
what is known as “cream skimming” [4], where insurers end up
excluding high-risk groups from the service—and only provide in-
surance to those that are less likely to need it. Insurance companies
also have an interest in using drowsiness detection as a device to
blame a driver and avoid responsibility in accident coverage.

Drowsiness and fatigue detection is already provided as a product
by some companies®, which advertise it as “life-saving” technology
that prevents accidents through warning interventions. It is targeted
at logistics companies that want to protect their drivers’ safety, but
also to “determine if they are distracted while driving”. In fact, some
insurance companies already use this product in their services in
order to “help [customers] save on vehicle insurance” 7.

Such discourse raises a second question about drowsiness detec-
tion, which is how this data will be used by insurance providers
and employers once it is made available. For example, logistics
companies may use detection data (regardless of its accuracy) as a
surveillance device to challenge drivers’ self-reported fatigue-levels
or justify driver termination, regardless of both the algorithm’s
accuracy and the source of drowsiness—which could come from
companies’ bad scheduling and work-time practices.

4.2.2  Worker surveillance. When DD is used for worker surveil-
lance by employers and managers, the promise is once more that
of safety. However, issues of worker control and organizational
malpractices may ensue from the availability of drowsiness detec-
tion data in such contexts. For example, the truck industry in the
US (which consists of roughly 3 million drivers [22]) already uses
electronic monitoring devices intensively to manage work hours, in-
spections, breaks, delivery speeds, etc. As shown by Levy [16], such
devices also produce considerable data related to driving efficiency,
idling time, acceleration patterns and other factors—which man-
agers then use as leverage to convince drivers to work longer hours.
One common practice is to use live tracking of working hours and
a comparison to other drivers in order to challenge a driver’s claim
of high fatigue (and force them shorten/postpone a break) [16].
The industry’s eagerness to use such devices for control, and cur-
rent malpractices based on indirectly estimating fatigue, indicates
a potential interest in DD technology. If drowsiness-estimation
data also became available to managers and dispatchers, such data
could be used to further increase authority over drivers and the
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ability to challenge drivers’ accounts—e.g. “you still have work-
ing hours left and the system says you are not tired, so you have
to skip this break”. However, as shown by Levy [16], drivers feel
that they always know their biophysical condition best, and are
hurt personally and professionally when told by others about their
condition. Another practice that is used in the truck industry also
sheds some light into the ways in which drowsiness detection al-
gorithms could end up being used. Multiple companies explicitly
compare drivers against each other through public leader-boards
of a performance metric (e.g. per-driver fuel or time efficiency) and
thus create social pressure for drivers to do longer hours or faster
driving [16]. If similar practices were applied by management to
signals of drowsiness-estimates, through drowsiness-per-mile or
similar rankings, they could introduce new dimensions of control
and unhealthy work incentives—as well as potentially serving as
excuses to fire less “fit” drivers. Finally, such worker control issues
would be further complicated by the fact that drowsiness detection
estimates can be specifically poor on the Male group (Section 3)—
which constitutes 92% of the trucker workforce [22].

5 CONCLUSION

In this paper we analyzed the performance of a state-of-the-art
drowsiness detection algorithm across subjects of different gender
and ethnicity. We showed that the algorithm performs consistently
worse on Male compared to Female participants, as well as on
Indo-Aryan & Dravidian, Middle Eastern, and East Asian groups
compared to Caucasian and Non-white Hispanic. We showed that
the algorithm does not generalize well to unseen groups, and that
there are thus potentially group-specific features for drowsiness
detection (or their subjective self-reported values). We identified
potential sources of this performance differential, such as facial
hair, skin tone, and face-touching frequency.

We also identified potential downstream harms of this bias, in
terms of disparate impact in safety, user annoyance, insurance
premiums and coverage, and work precarity. We ended up with
a discussion of potential misuses of the technology. While DD is
currently promoted in research as a device for safety and efficiency,
it is in practice a door into worker surveillance and precarity, and
insurance coverage and premium discrimination.

This paper thus serves as a warning to the kinds of impact and
misuses of drowsiness detection technology, and as a resource for
reflection and policy regarding the use of this technology. It also
highlights the gap between academic research on DD—specifically
the narratives of safety and efficiency it promotes—and the potential
real-world interests and risks. These are, with few exceptions [20,
21], left out of academic discussion, but need further exploration
and consideration.
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